

IATE API

Reference Manual

December 2001

Copyright © 1998-2001

InnoSys
INCORPORATED

3095 Richmond Pkwy, Ste 207
Richmond, CA 94806

+1 510 222-7717

i

This manual and the software described in it are copyrighted, with all rights reserved. Under
the copyright laws, this manual or the software may not be copied, in whole or in part,
without the written consent of InnoSys Incorporated.

NO WARRANTIES OF ANY KIND ARE EXTENDED BY THIS DOCUMENT. The
information herein and the IATE™ products themselves are furnished only pursuant to and
subject to the terms and conditions of a duly executed Product License.
InnoSys SPECIFICALLY DISCLAIMS ALL WARRANTIES, WHETHER IMPLIED OR
EXPRESSED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. InnoSys has no responsibility, financial
or otherwise, for any result of the use of this document and/or the associated product, including
direct, indirect, special and/or consequential damages. The information contained herein is
subject to change without notice.

IATE is a trademark of InnoSys, Inc. Microsoft®, Windows®, Windows NT®, Windows®
2000, Windows® ME, Windows® 98, Windows® 95, and Visual Basic are either registered
trademarks or trademarks of Microsoft Corp. Sun™, Sun Microsystems™, Solaris™, Netra™,
Sun Enterprise™, and Ultra™ are either registered trademarks or trademarks of Sun
Microsystems, Inc. SPARC® and UltraSPARC® are registered trademarks of SPARC
International, Inc., licensed exclusively to Sun Microsystems, Inc.in the United States and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc UNIX is a registered trademark of The Open Group.
Apple and Macintosh are registered trademarks of Apple Computer, Inc. All other
product names are either registered trademarks or trademarks of their respective holders.

INSCC-QP cards have been tested and found to comply with the limits for CE conformity; for
Class B digital devices, pursuant to Part 15 of the FCC Rules; for the Japanese VCCI standards;
and for similar standards. The FCC Class B approval is deemed to be satisfactory evidence of
compliance with Canada’s ICES-003 of the Canadian Interference-Causing Equipment
Regulations. All of these standards and limits are designed to provide reasonable protection
against harmful interference in a residential installation. This equipment generates, uses and
can radiate radio frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications. However, there is no
guarantee that interference will not occur in a particular installation. If an INSCC-QP card does
cause harmful interference to radio television, or other reception, which can be determined by
turning the computer off and on, the user is encouraged to try to correct the interference by one
or more of the following measures:

• Reorient the receiving antenna.
• Increase the separation between the computer and receiver (radio or TV).
• Connect the computer into an outlet on a circuit different from that to which
 the receiver is connected.

 ii

Shielded cables must be used with the INSCC-QP cards to insure compliance with emission
limits. Changes or modifications to the INSCC-QP not expressly approved by InnoSys could
void the customer’s right to operate the equipment.

CE Declaration of Conformity
According to EN 45014

Manufacturer’s Name and Address
InnoSys Incorporated
3095 Richmond Parkway, Suite 207
Richmond, CA 94806

Declares that the product:
Product Name: INSCC
Model Number: INSCC-QP
Conforms to the following Product Specifications:
EMC: EN 55022: 1994 Class B
EN 50082-1:1992
IEC 801-2:1984 - 4kV CD, 8 kV AD
IEC 801-3:1984 - 3 V/m
IEC 801-4:1988 - 1 kV Power Lines, .5 kV Signal Lines
following the provisions of the Electromagnetic Compatibility Directive.
It also meets the EN60950:1992 standard, including amendments 1, 2 and 3, relating to
the Low Voltage Directive (ITE).
Richmond, CA, USA Mike Ridenhour
June, 1996 President

Voluntary Control Council for Interference by
Information Technology Equipment

This equipment is in the 2nd Class category (information equipment to be used in a residential
area or an adjacent area thereto) and conforms to the standards set by the Voluntary Control
Council for Interference by Data Processing Equipment and Electronic Office Machines aimed
at preventing radio interference in such residential area.
When used near a radio or TV receiver, it may become the cause of radio interference.
Read the instructions for correct handling.

InnoSys Incorporated
3095 Richmond Parkway, Suite 207
Richmond, CA 94806
(510) 222-7717 Voice
(510) 222-0323 FAX
info@innosys.com

 iii

Contents

OVERVIEW OF THE API... 1

SUPPORTED PLATFORMS ... 1
IATE INSTALLATION REQUIREMENTS .. 2
APPLICATION REQUIREMENTS .. 2
SUMMARY OF IATE API FUNCTIONS ... 3

API LIBRARY REFERENCE ... 4
IATESTART .. 4
IATEOPEN.. 8
IATECLOSE .. 20
IATESTOP... 22
IATEREAD.. 24
IATEWRITE.. 28

IATECONTROL COMMANDS.. 32
APISETAPIDEBUG .. 33
APISETAPILOGGING... 34
APISETDEBUGOUT... 35
APISETOPENDELAY ... 37
APISETTO... 38
APISETMSG .. 40
APISETSEGMENT .. 42
APISETAUTOANS ... 43
APISETNOANS.. 45
APIGETTAPROT.. 46
APIGETTACCC... 47
APIGETHOSTSTAT.. 48
APIGETTASTAT.. 50
APIGETTATHROTTLE ... 52
APIGETOBJECTCONFIG .. 53
APISENDACK.. 55
APIPRINTERSTAT.. 63
APINOTATIMEOUT.. 65
APIGETVERSION... 67
APISETHEARTBEAT .. 68
APISTART1MIN ... 70
APIRESETLOCK .. 71
APIRESETLOCAL .. 75
APIFORWARDRESET ... 76
APIWHOAMI... 77
PEER-TO-PEER MESSAGES .. 79
APIQUERYAPPLMSG .. 81
APIGETAPPLMSG ... 82
APISENDAPPLMSG ... 84
APIFORCESEPERATESOCKETS.. 87

 iv

APPENDIX A: ERROR CODES... 88
ERROR -2002: SERVERUNREACHABLE / NOSERVERERROR .. 88
ERROR -2003: OUTOFBUFFERERROR .. 89
ERROR -2004: OBJECTUNDEFINED / NAMEISBAD ... 90
ERROR -2005: NAMEINUSE.. 91
ERROR -2007: DATAERROR ... 92
ERROR -2008: NOTSTARTEDERROR .. 93
ERROR -2009: BADVERSIONERROR... 94
ERROR -2010: DIRECTIONVIOLATION.. 95
ERROR -2011: INTERCEPTERROR... 97
ERROR -2101: APINOFREECHANNEL / TOOMANYSESSIONS .. 98
ERROR -2102: APIBADCHANNEL / INVALIDREFNUM.. 99
ERROR -2103: APIOVERRUNERR... 100
ERROR -2201: INTERNALLOGICERROR.. 102
ERROR -2205: HOSTUNREACHABLE .. 103
ERROR -2207: SESSIONNOTCONFIGURED.. 104
ERROR -2208: NOSOCKET.. 105
ERROR -2209: CANTCONNECTTOSERVER ... 106
ERROR -2210: UNEXPECTEDMSGTYPE.. 107
ERROR -2211: WRITEFAILED ... 108
ERROR -2212: READFAILED... 109
ERROR -2214: OPENBLOCKED ... 110
ERROR -2215: SESSIONDISCONNECTED... 111
ERROR -2216: NOTIMPLEMENTED ... 112
ERROR -2217: TOOMUCHDATAQUEUED ... 113
ERROR -2218: TOOMANYCONNECTIONS... 114
ERROR -2404: INVALIDTASK ... 115

APPENDIX B: BACKGROUND INFORMATION ON THE GATEWAY 116
TERMINAL AND PRINTER DEVICE OBJECTS .. 116
DYNAMIC OBJECTS ... 117

APPENDIX C: DESCRIPTION OF HOST TRAFFIC .. 118
APPENDIX D: SHARING A TA .. 120

“INTERCEPT” MODE.. 120
“DIVERT” MODE ... 120
USAGE ... 121
MESSAGE FORWARDING ... 123
SAMPLE PROGRAM .. 124

APPENDIX E: THE IATE API FOR VISUAL BASIC.. 125
THE IATE API DLLS FOR VISUAL BASIC... 125
SAMPLE PROGRAMS FOR VISUAL BASIC... 125
USING THE IATE API IN VISUAL BASIC ... 129
IATE API FUNCTIONS IN VISUAL BASIC .. 130
“HELPER FUNCTIONS” IN THE SAMPLE APPLICATIONS FOR VISUAL BASIC 132
USER-INTERFACE FUNCTIONS IN THE SAMPLE APPLICATIONS FOR VISUAL BASIC 137
THE “TIMER OBJECT” IN THE SAMPLE APPLICATIONS FOR VISUAL BASIC 139

 1

Overview of the API

The IATE Application Programming Interface (API) enables an applications program to
communicate with an Airline Computer Reservation System (CRS), through an InnoSys IATE
Gateway.

The API provides a set of program function in the C language, supplied as a dynamic link library
(DLL) in Windows, or a static library on UNIX platforms.

The API communicates with the IATE Gateway via TCP/IP protocols. The Gateway
communicates with the airline host via TCP/IP, ALC, or X.25. See the Gateway documentation
for information about Gateway configuration and communications.

Supported Platforms

The API is supported on the following platforms:

• Windows 2000 (initial release or Service Pack 1).
• Windows NT4 (Service Pack 3 or later).
• Windows 98 (First or Second edition).
• Windows ME (Millennium).
• Windows 95.

Sun Solaris 2.4 and later (a.k.a. SunOS version 5.5.4 and later), including Solaris 7 and 8
(a.k.a. Solaris 2.7 and 2.8.)

Contact InnoSys if you require information about API availability for other UNIX or Linux
platforms.

 2

IATE Installation Requirements

The current API communicates with Version 2.x.x IATE gateways on Windows 2000,
Windows NT4, or Solaris.

The API can also communicate with Version 3.3 or later of the IATE Gateway for
Apple Macintosh, with IATEtcp version 2.2b8 or higher.

Application Requirements

The IATE supports single-threaded applications on both Windows and UNIX. The current API
supports multithreaded applications on Windows only. At this time, the Windows version of the
API is the only version that is guaranteed to be thread safe.

Since The UNIX version of the API is not guaranteed to be thread safe, it does not support
multithreaded applications on UNIX. However, the UNIX API can be used with multiple
processes.

For related information on multithreaded or multiprocess applications, please refer to the
description of the APIForceSeparateSockets command in the IateControl section of this
document.

 3

Summary of IATE API Functions

These functions are described more fully in subsequent sections of this document.

Function: IateStart

Purpose: IateStart initializes the API. The application calls IateStart once, before

calling any of the other API functions below. The application must also call
IateStop once before terminating.

Function: IateOpen

Purpose: IateOpen opens a communication session through which the application

communicates with a TA object on the airline host, via the IATE Gateway.
After opening a session with IateOpen, the application can IateRead or
IateWrite to communicate, or IateControl to control various options on the
session. For each session opened with IateOpen, the application should later
call IateClose to close the session.

Function: IateRead
Function: IateWrite

Purpose: The application uses IateWrite and IateRead to send and receive messages

from the airline host, via the IATE Gateway. These functions communicate
on a TA object which the application established through IateOpen.

Function: IateControl

Purpose: IateControl handles several special commands, with which the application

can query and control various options related to the operation of the API, the
Gateway, or a particular TA object. See the IateControl section of this
document for information about the various commands available.

Function: IateClose

Purpose: The application uses this to release a TA object, when the application is no

longer using it. (This function is the counterpart to IateOpen.)

Function: IateStop

Purpose: The application uses this to release its connection to the API, when the

application is about to terminate, or when the application has no further use
for the API. (This function is the counterpart to IateStart.)

 4

API Library Reference

This section describes the API functions in detail.

IateStart

Summary:

 long
 IateStart(
 long install_handlers,
 long dummy,
 unsigned char *buff);

Purpose:

IateStart initializes the API, preparing it for subsequent API function calls.

Usage:

The application calls IateStart before IateOpen. If IateStart succeeds,
it returns a start code value, which the application should pass in any
subsequent calls to IateOpen.

Under normal conditions with a valid IATE software installation, IateStart
is not expected to fail. If IateStart fails and returns an error code,
the application cannot use the API. The application should not call IateOpen
or any other API functions after IateStart returns an error code. Any such
calls would also return errors, because the API has not been initialized.

 5

Arguments:

 install_handlers

 This argument tells the API whether or not to
 use its own signal handlers:

 1 tells the API to use its own signal handlers.
 This is the recommended value.

 0 means the application intends to supply its own
 signal handlers. This is not recommended.

 dummy

 This argument is ignored.
 (It is included for backwards compatibility with older
 applications that used previous versions of the IATE API.)

 buff

 This string argument optionally specifies the Gateway host name or IP address,
 and the network service or port on which the Gateway listens for API client
 connections. The API assigns these as default values for subsequent calls
 to IateOpen.

 IateStart does not connect to the Gateway. The values specified here
 apply only to subsequent IateOpen calls that do not explicitly specify the
 Gateway host address and network service or port.

 If the application does not specify the host name or IP address in either the
 IateStart call or an IateOpen call, the default is the local host on which the
 application is running.

 If the application does not specify the network service name or port number
 in either the IateStart call or an IateOpen call, the default is “ialcserver”,
 which is normally associated with the IATE default network port number, 1413.

 If a service name is specified, it must be defined in the system's network “services”
 file. Refer to Appendix I for information about the “services” file.

 6

 This argument takes one of these four formats:

 ""
 a blank string (not a NULL pointer)

 "@Host\\Service\\"

 This specifies the Gateway host address, and the
 network service name or port number for connection
 to the Gateway.

 Substitute the Gateway host's name, or IP address,
 in place of “Host” above.

 In place of “Service” above, substitute the network
 service name, or network port number, for connection
 to the Gateway.

 "@Host\\"

 This specifies the Gateway host name or IP address.

 (The unspecified service name defaults to “ialcserver”,
 which is normally associated with the IATE default
 network port number, 1413.)

 "ServiceName\\"

 This specifies the network service name or port number
 for connection to the Gateway.

 (The unspecified Gateway host name defaults to the
 local host on which the application is running.)

 Note the double backslashes between the fields in the arguments above.
 This is a C-language convention: Each successive pair of backslashes \\
 equates to a single backslash in the final string. Programs using the IATE API
 for Visual BASIC would use single backslashes rather than pairs.

 7

Returns:

 < 0 Error.
 > 0 Success.
 The return value is a session reference number for use in
 subsequent IateRead, IateWrite, IateControl, or IateClose calls.

Example:

 long start_code;
 start_code = IateStart (1, 0, "@gw2\\ialcserver\\");

 8

IateOpen

Summary:

 #include "U_API.h"

 long
 IateOpen(
 long start_code,
 long cmd,
 unsigned char *buff);

Purpose:

IateOpen establishes a link to a TA object at the IATE Gateway,
for communication with the airline reservation host.

Usage:

The application calls IateStart before calling IateOpen.
(See the IateStart information above.)

The value returned from a successful IateOpen call is known as a
reference number (or refnum). The application passes the refnum to all
subsequent IateRead, IateWrite, IateControl, or IateClose calls for this object.

Objects are defined in the gateway configuration file, and map each object name
to an IA TA line address. Refer to the gateway installation manual for more
details on object names.

Arguments:

 start_code

 This argument should be set to the
 start-code value that IateStart returned.

 9

 cmd

 This argument should be set to one of the following four commands:

 APILinkToName - to link to an object by its name or group-name.
 APILinkToTa - to link to an object by specifying an IA & TA.
 APILinkToDyCrt - to link to a "dynamic CRT" object.
 APILinkToDyPrt - to link to a "dynamic printer" object.

 buff

 This argument contains a string, which specifies the TA object
 (or group of objects) on which the application requests a connection.

 The format and contents of this string argument depend on the type of connection
 requested, as indicated by the value of cmd. Explanations and examples are
 given below.

 The contents of buff specify the TA object to connect; and may also specify the
 Gateway host name or IP address, and the network service or port on which the
 Gateway listens for API client connections.

 If the application does not specify the host name or IP address in the IateOpen
 call, it defaults to the value specified in the earlier call to IateStart, or to the
 local host on which the application is running.

 If the application does not specify the network service name or port number
 in the IateOpen call, it defaults to the value specified in the earlier call to IateStart,
 or to “ialcserver” (which is normally associated with the IATE default
 network port number, 1413).

 If a service name is specified, it must be defined in the system's network “services”
 file. Refer to Appendix I for information about the “services” file.

 Note:
 The contents of buff are not preserved by the IateOpen call.

 10

 For the APILinkToName command:

 If cmd is APILinkToName, buff contains a string
 which can specify the following values:

 a Gateway host name,
 a TCP/IP Service name, and
 a TA object name or group name.

 Syntax:

 The buff string argument takes one of these formats:

 "@HostName\\ServiceName\\ObjectOrGroupName"

 Substitute the Gateway host's name, or IP address, in place of
 “Host” above.

 In place of “Service” above, substitute the network service
 name, or network port number, for connection to the Gateway.

 Specify a TA Object or Group name in place of
 “ObjectOrGroupName”.

 "@\\ServiceName\\ObjectOrGroupName"

 This syntax omits the host address. It defaults to the host name
 or IP address that the application previously specified in the
 IateStart call, or to the local host on which the application is running.

 In place of “Service” above, substitute the network service name,
 or network port number, for connection to the Gateway.

 Specify a TA Object or Group name in place of
 “ObjectOrGroupName”.

 "@HostName\\\\ObjectOrGroupName"

 This syntax omits the network service/port. It defaults to the
 service name or port number that the application previously
 specified in the IateStart call, or to “ialcserver” (which is normally
 associated with the IATE default network port number, 1413).

 "@\\\\\\ObjectOrGroupName"
 This syntax omits the HostName and ServiceName.
 The API uses the names that the application previously
 specified in the IateStart call.

 11

 (Note the double backslashes between the fields in the arguments above.
 This is a C-language convention: Each successive pair of backslashes \\

equates to a single backslash in the final string. Programs using the
IATE API for Visual BASIC would use single backslashes rather than pairs.)

 The TA Object or Group Name specifies which TA object the application
 wishes to use for communications with the airline host. This must match
 one of the object or group names listed in the Gateway's configuration.

 If the application specifies a TA Object name, the IateOpen call
 requests a connection to that TA object. If the application specifies
 a Group name, this requests a connection to any object in the
 specified group. Refer to the IATE Gateway documentation for
 information about how to configure TA objects and groups.

 For the APILinkToTa command:

 The APILinkToTa command is generally not recommended.
 APILinkToName is usually appopriate.

 If cmd is APILinkToTa, buff contains a string that specifies an
 IA and TA number (instead of an object or group name).
 The Host and Service names can also be specified in the same way
 as for the APILinkToName command (see above).

 Syntax / Example:

 "@\\HostName\\ServiceName\\\040\020"

 The IA and TA values are characters specified in ALC code using octal
 numeric values. In the example above, the IA value is 040 octal
 (equal to 20 hexadecimal or 32 decimal), and the TA value is 020 octal
 (equal to 10 hexadecimal or 16 decimal).

 All C compilers allow octal character values, such as '\040' and '\040'
 as shown in the example above. Some compilers also support hexadecimal
 character values using a different syntax, but this may not work in some cases,
 so we recommend the octal format.

 12

 Optionally, the buff argument can also specify a port name,
 immediately following the TA value in the string. The port name
 resolves to a particular physical line. It's necessary to specify
 the port name only if the Gateway has the same IA and TA configured
 on multiple ports. The specified port name must match one that is
 specified in a Gateway configuration file's PORT_NAME directive.

 Syntax / Example:

 "@\\HostName\\ServiceName\\\040\020PortName"

 For the APILinkToDyCrt or APILinkToDyPrt command:
 __

 The APILinkToDyCrt and APILinkToDyPrt commands request
 a connection to a “dynamic” terminal or printer object, respectively.

 A “dynamic” object is one that the Gateway configuration
 specifies with the TERMINAL_API or PRINTER_API object-type.

 Dynamic objects are similar to named “groups” of objects,
 in the sense that the application requests a connection to
 “any object” of the specified dynamic type.

 If cmd is APILinkToDyCrt or APILinkToDyPrt,
 the application should specify the buff string
 using the same syntax as for APILinkToName:

 "@HostName\\ServiceName\\ObjectOrGroupName"

 (The Host and Service names are optional under the same
 conditions as for APILinkToName. See the examples under
 APILinkToName, above.)

 For Dynamic objects, the specified Object Name is just a
 placeholder. The API will not use it, but it must be specified anyway.

 13

Returns:

 If IateOpen succeeds in establishing a link to a TA object,
 it returns a nonnegative value.

 If the link was not successful, IateOpen returns a negative error value.
 Refer to Appendix A for information about IATE API error values
 and their causes.

 IateOpen does not preserve the string argument that the caller
 placed in buff. (If the caller will later re-use the string value that it
 placed in buff, the caller may need to save the string value in a separate
 buffer before calling IateOpen.)

 On return, buff will contain a 2-byte value. Historically, this
 indicated the IA and TA associated with the connected object.
 Although this indication is still valid in some cases, it is generally
 not recommended to use these returned IA and TA values in new
 application code. If the application requires information about the
 configured IAs and TAs, the preferred way to obtain such information
 is to use IateControl with the APIGetObjectConfig command.

Note:

 The API normally enforces certain restrictions on IateOpen calls,
 due to the nature of TCP socket connections.

 It takes time to close down a TCP/IP socket gracefully.
 Rapidly opening and closing sockets may be inefficient
 on the system and network, and may cause problems
 on some systems.

 The API enforces a minimum time between consecutive
 IateOpen calls. The interval required between successive
 IateOpen calls can be adjusted using IateControl with the
 APISetOpenDelay command.

 We strongly recommend that the open delay be set to
 no less than 10 seconds.

 14

See also:

 IateControl function, APISetOpenDelay command.

 Appendix B: Background Information about the Gateway.

Example:

This example assumes two gateways, one running on a remote machine
and one running on the local machine along with the application program.

The application runs on system “gw1”. The gateway on that system has
the following objects defined:

IA TA type object group

01 01 TERMINAL term11 **
01 02 TERMINAL_API term12 **
01 03 TERMINAL_API term13 **
01 04 TERMINAL term14 group1
01 05 TERMINAL term15 group1

The second gateway is running on a remote machine named “gw2”
with the following objects defined:

02 01 TERMINAL ** group2
02 02 TERMINAL_API term22 group2
02 03 TERMINAL_API term23 **
02 20 TERMINAL term220 **
02 05 TERMINAL term25 *

 15

This program shows the ability of the API to connect to multiple gateways and
different types of objects. We'll assume that no other IATE applications are
running, so the configured objects are all available.

/* ------------------------------- links.c ---------------------------------- */

#include <stdio.h>
#include "U_API.h"
#include "U_APItyp.h"
#include "U_APIpros.pro"

/*
 Initialize a list of TA object connection specifiers for IateOpen.
*/

#define NUM_OBJS 4
char *connection_specifiers[NUM_OBJS] =
{
 "@gw2\\ialcserver1\\term23", /* an object on a remote gateway */
 "term14", /* an object on a local gateway */
 "@gw1\\ialcserver\\group1", /* a request for an object in the group "group1" */
 "@gw1\\ialcserver\\dummy" /* a dynamic link */
};

unsigned char
 buff[MAX_BUFF_SZ], /* message buffer */
 ctrl[CTRL_BLK_SZ]; /* control block:C1,C2,EOMx,CCC_OK,MORE */
 /* (See the IateRead documentation) */

int userBreak(void); /* program termination function
 (defined below) */

main()
{
 struct u_link_response
 config; /* object configuration information */

 long
 start_code, /* start-code returned from IateStart */
 result_IateRead, /* return value from IateRead */
 result_IateWrite, /* return value from IateWrite */

 refnums[NUM_OBJS]; /* reference number for each connection */

 short
 open_delay; /* parameter for APISetOpenDelay command */

 int
 conn_index = 0, /* index to list of connections */
 num_conns = 0; /* number of connections */

 /*
 Initialize API -
 IateStart returns "start code"
 which must be passed to IateOpen.
 */

 start_code = IateStart(1, 0, (unsigned char *)"");
 if (start_code < 0)
 exit(1);
 else
 printf ("IateStart OK\n");

 16

 /*
Set the minimum time required between IateOpen calls.
Do not set this time to less than 10 seconds.

 */

 open_delay = 10; /* (seconds) */
 IateControl(

0,
APISetOpenDelay,
(unsigned char *) &open_delay);

 /*
 Link to gateway running on remote machine "gw2".
 (Host and service names are required here.)
 */

 refnums[num_conns] =
 IateOpen(
 start_code,
 APILinkToName,
 (unsigned char *) connection_specifiers[num_conns]);
 /* "@gw2\\ialcserver1\\term23" */

 num_conns++;

 /*
 Link to gateway running on the local machine "gw1".
 (Host and service names are optional here.)
 */

 refnums[num_conns] =
 IateOpen(
 start_code,
 APILinkToName,

(unsigned char *) connection_specifiers[num_conns]);
 /* "term14" */

 num_conns++;

 /*
 Link to remote gateway on
 IA: hexadecimal 02 = octal \002,
 TA: hexadecimal 20 = octal \040.

 When using IateOpen with APILinkToTa,
 the IA and TA are the ALC values converted to octal format,
 for proper embedding in the object_name string.
 */

 refnums[num_conns] =
 IateOpen(
 start_code,
 APILinkToTa,
 (unsigned char *)connection_specifiers[num_conns]);
 /* "@gw2\\ialcserver1\\002\040" */

 num_conns++;

 17

 /*
 Link to first free TA in group 1 on the local machine "gw1".
 This should result in a link to term15.
 */

 refnums[num_conns] =
 IateOpen(
 start_code,
 APILinkToName,
 (unsigned char *) connection_specifiers[num_conns]);
 /* "@gw1\\ialcserver\\group1" */

 num_conns++;

 /*
 Dynamic link to a Dynamic CRT object on the local machine:
 This results in a link to "term22", since this is the first
 dynamic CRT. The "dummy" object-name must be specified here
 as a placeholder, although the API does not use it.
 */

 refnums[num_conns] =
 IateOpen(
 start_code,
 APILinkToDyCrt,
 (unsigned char *) connection_specifiers[num_conns]);
 /* "@gw1\\ialcserver\\dummy" */

 num_conns++;

 /*
 For each TA object that was successfully linked,
 send a message to the host.
 */

 for (conn_index = 0; conn_index < num_conns; conn_index++)
 {
 if (refnums[conn_index] < 0)
 printf (
 "IateOpen failed (error %d) for: %s\n",
 refnums[conn_index],
 connection_specifiers[conn_index]);
 else
 {
 /* Get the object's configuration information. */

 IateControl(
 refnums[conn_index],
 APIGetObjectConfig,
 (unsigned char *) &config);

 /* Display the object's IA and TA. */

 printf(
 "Successful link to object IA TA: %s\n",
 config.iata_str);

 /* Send a message to the host. */

 strcpy (buff, "I");
 result_IateWrite =
 IateWrite(
 refnums[conn_index],
 strlen(buff),
 buff);

 18

 if (result_IateWrite < 0)
 printf(
 "IateWrite failed (error %d)\n",
 result_IateWrite);
 }
 }

 /*
 Cycle through the sessions and read the host responses.
 See the IateRead documentation for details.

 Note: This is not a complete example.
 Additional code, not shown in this example, should provide a way to
 exit this loop. For example, in a console program, a signal handler
 could catch a Ctrl-C keystroke, call IateClose for the open sesssions,
 and call IateStop before terminating this process.
 */

 while (!userBreak()) /* loop until user requests termination */
 {
 for (conn_index = 0; conn_index < num_conns; conn_index++)
 {
 if (refnums[conn_index] > 0)
 {
 result_IateRead =
 IateRead(
 refnums[conn_index],
 MAX_BUFF_SZ,
 buff,ctrl);

 if (result_IateRead == 0)
 continue; /* no message received */
 else
 {
 if (result_IateRead < 0)
 {
 printf(
 "IateRead failed (error %d)\n",
 result_IateRead);

 refnums[conn_index] = -1;
 }
 else
 {
 /*
 Null-terminate and display the received string
 */

 buff[result_IateRead - 2] = '\0';

 printf(
 "Reply from host (refnum %d): %s\n",
 refnums[conn_index],
 buff);
 }
 }
 }
 }
 }
}

 19

int
userBreak(void)
{
 /*
 This function should return a nonzero value if the
 user has requested termination of the program.
 After this function returns nonzero,
 the caller should terminate the program gracefully.

 The body of this function is not shown here.
 The means of detecting user input depends on the
 platform (Windows or UNIX), the type of application,
 and choice of implementation.

 For example, in a console program, this function could
 work with a signal handler to detect a Ctrl-C keystroke.
 After the user presses Ctrl-C to terminate the program,
 this function would return nonzero, and the caller
 would proceed to terminate the program.
 */

 /*
 ... Insert code here, to return nonzero
 if the user has requested program termination ...
 */

 return 0;
}

/* -- */

 20

IateClose

Summary:

long
IateClose(long refnum);

Purpose:

IateClose terminates a TA object link that was opened with IateOpen.

Usage:

IATE applications should use IateClose to close any open connections --
before the application terminates, or whenever the application has
finished using an open session.

A TA object accepts normal connections from only one application at a time.
(There is an exception to this. A second application can connect to an object
through the “Shared TA” mechanism, but that is a special type of connection.)
After an application uses IateOpen to connect, other applications cannot
establish normal connections to the object, until the first application calls
IateClose to disconnect.

If the application fails to call IateClose, and leaves any TA object
connections open when it terminates, the open connections may not be
properly closed. (This may happen if the application crashes,
or if the application was not properly written.) In that case, the
connection may remain 'stuck' open indefinitely, unless the Gateway is
configured to disconnect it after an inactivity timeout.

Arguments:

refnum

The reference number that IateOpen returned.

 21

Returns:

Zero on success, or a negative error code. Refer to Appendix A
for information about IATE API error values and their causes.

Example:

long refnum;
...
refnum = IateOpen(...);
...
IateClose(refnum);

 22

IateStop

Summary:

For Windows applications:

long
IateStop(long startcode);

For Solaris or other UNIX:

long
IateStop(void);

Purpose:

IateStop terminates the application's use of the IATE API.

Usage:

The application should call IateStop before terminating.
(IateStop is the counterpart to IateStart,
which the application called while starting up.)

Argument:

For the Windows version only:

startcode

This is the start code value that IateStart returned.
Applications running on Windows pass this value to IateStop.
Applications running on UNIX do not pass this value to IateStop.

 23

Returns:

Zero on success, or a negative error code.

Refer to Appendix A for information about
IATE API error values and their causes.

Example:

long startcode;
...
startcode = IateStart(...);
...

/* For Windows only: */
IateStop(startcode);

/* For UNIX only: */
IateStop();

 24

IateRead

Summary:

 long
 IateRead(
 long refnum,
 long nchars,
 unsigned char *buff,
 unsigned char *ctrlblock);

Purpose:

IateRead reads message data that the Gateway has received from the airline host.

Usage:

If message data is already available when the application calls IateRead,
it will return immediately.

If no message is immediately available, IateRead will wait until a message or segment
arrives, or until a timeout expires. The application can specify the timeout by calling
IateControl with the APISetTO command. If the wait time expires with no message
data received, the call to IateRead will complete with a return value of 0.

IateRead can read complete messages, or it can read individual message segments.
This depends on whether the application has selected message or segment reading mode.
(See IateControl, APISetMsg and APISetSegment.)

 25

Arguments:

 refnum

 The reference number that IateOpen returned for this session.

 nchars

 The size of the buffer to receive data.
 Suggested value: MAX_BUFF_SZ.

 buff

 This is the buffer to receive data. If IateRead reads a message,
 this buffer will contain the text of the message.

 The message text in this buffer will not include the command characters,
 the EOM, and the CCC indicator. They will be returned in ctrlblock.

 The received data is in ASCII. (The Gateway handles character translation
 from ALC to ASCII.)

 ctrlblock

 An additional buffer of size CTRL_BLK_SZ,
 in which IateRead will store the following information:

 ctrlblock[CTRL_C1]

 The C1 character in ASCII.

 ctrlblock[CTRL_C2]

 The C2 character in ASCII.

 ctrlblock[CTRL_EOM]

 The EOM character in ASCII.

 26

 ctrlblock[CTRL_CCC_OK]

 1 if the CCC (message checksum) was valid,
 0 if the CCC was invalid.

 (If the CCC was invalid, the application
 should discard the message.)

 ctrlblock[CTRL_MORE]

 1 if this message is not complete:
 a subsequent call to IateRead
 will return the next part of the message.

 0 if this call to IateRead returned a
 complete message.

Returns:

 If IateRead returns any message data in buff, the function’s return value
 indicates the length of the message, plus 2. The additional 2 characters,
 C1 & C2, are positioning characters in the message envelope, as described in
 Appendix C: Description of Host Traffic.

 IateRead returns zero if the timeout expired with no data available.

 Negative return values indicate errors. Refer to Appendix A for information about
 IATE API error values and their causes.

 27

Examples:

(See examples in this document and the sample programs which come with the
IATE API package.)

 unsigned char
 buff[MAX_BUFF_SZ], /* 2015 character message buffer */
 ctrl[CTRL_BLK_SZ]; /* control block:
 C1, C2, EOMx, CCC_OK, MORE */
 long
 refnum, /* successful IateOpen return value */
 nchars, /* nchars = len of message plus 2 */
 ret; /* IateRead return value */

 ...
 IateRead (refnum, MAX_BUFF_SZ, buff, ctrl);

 28

IateWrite

Purpose:

 IateWrite sends a message to the airline host.

Syntax:

 long
 IateWrite(
 long refnum,
 long nchars,
 unsigned char *buff)

Description:

 refnum

 The reference number that IateOpen returned for this session.

 nchars

 The size of the buffer containing data to send.

 buff

 This is the buffer containing data to send.

 The data is in ASCII. (The Gateway handles character translation
 from ASCII to ALC.)

 If the last character of the message data is an EOM character,
 the API sends the message to the host with that EOM.
 If no EOM is supplied, the API sends the message with EOMC
 (End Of Message – Complete).

 29

Returns:

 IateWrite returns a negative value if an error occurs. Refer to Appendix A for
 information about IATE API error values and their causes.

 Two errors in particular, -2210 (DirectionViolation) and –2103 (API OverrunErr)
 can occur as a result of application design issues. For details, refer to the descriptions
 of these errors in Appendix A.

Example:

(See examples in this document and the sample programs which come with the
IATE API package.)

 unsigned char
 buff[MAX_BUFF_SZ];
 long
 refnum, /* successful IateOpen return value */
 ret; /* IateWrite return value */

 ...
 strcpy (buff, "I"); /* send an Ignore message to the host: */
 ret = IateWrite (refnum, strlen(buff), buff);

 30

IateControl

Summary:

 long
 IateControl(
 long refnum,
 long cmd,
 unsigned char *buff);

Purpose:

The IateControl function performs a number of different functions (specified by a
command-code parameter) -- such as setting various parameters for API and Gateway
operation, obtaining configuration information from the Gateway, managing message
acknowledgment, and indicating printer status.

Arguments:

 refnum

 The reference number for the TA object connection
 on which to perform a control command.
 (This can be zero for certain commands which
 do not require a TA object connection.)

 cmd

 A command code specifying the operation to perform.
 See below.

 buff

 Buffer for input or output data, used with some commands.

 31

Returns:

On success, IateControl returns zero, or a command-specific return value.
(Refer to the description of each command below.)

On failure, IateControl returns a negative error code.
Refer to Appendix A for information about IATE API error values and their causes.

 32

IateControl Commands

The command code is the second of the three argument to IateControl. The first IateControl
parameter is a TA object connection reference number (if required). The third argument is an
input or output parameter which depends on the particular command.

Some IateControl commands operate on an established TA object connection. Such commands
require the connection reference number as the first argument to IateControl. Some other
commands do not operate on a particular object connection; for those commands the first
argument should be zero.

 33

APISetApiDebug

Purpose:

This IateControl command enables or disables API diagnostic output to the default or custom
output destination, as described below.

Arguments:

The first argument to IateControl should be zero for this command, because this command does
not operate on a specific TA object.

The second argument to IateControl is the APISetApiDebug command.

The third argument to IateControl is a bit-mask value specifying the diagnostic output levels to
enable. See Appendix G for a description of each diagnostic output level. If the third
argument’s value is zero, this turns off all API diagnostic output.

If the third argument’s value is nonzero, the API will generate the enabled diagnostic output to a
default or custom output destination. The default destination is the “standard output” which
works for console (text-mode) programs. A non-console application (such as a program that
uses a graphical user interface, or no on-screen user interface), or an application that requires a
different destination for diagnostic output, can use the APISetDebugOut command to define a
custom diagnostic output function.

See also:

 APISetDebugOut
 APISetApiLogging

Example:

 short val = 0xff;
 IateControl (0, APISetApiDebug, (unsigned char *) &val);

 34

APISetApiLogging

Purpose:

This IateControl command enables or disables API diagnostic output to a log file, as described
below.

Arguments:

The first argument to IateControl should be zero for this command, because this command does
not operate on a specific TA object.

The second argument to IateControl is the APISetApiDebug command.

The third argument to IateControl is a bit-mask value specifying the diagnostic output levels to
enable. See Appendix G for a description of each diagnostic output level. If the third
argument’s value is zero, this turns off all API diagnostic output.

If the third argument’s value is nonzero, the API will generate the enabled diagnostic output to a
file named “iatelog.log”.

See also:

 APISetApiDebug

Example:

 short val = 0xff;
 IateControl (0, APISetApiLogging, (unsigned char *) &val);

 35

APISetDebugOut

Purpose:

This command specifies an alternate function for displaying or processing any API diagnostic
output enabled by APISetApiDebug. See the sample program below and “testterm.c”
(supplied with the API distribution) for examples of an alternate output function.

Arguments:

The first argument to IateControl is zero, and the third argument specifies the
diagnostic output function.

The application supplies the output function. It is a formatted output function
which works like printf. It takes a format string as its first argument, followed by
a variable argument list containing any additional output parameters.
The example below shows a typical implementation.

Example:

 void testDebugOut (char *format_str, ...);
 IateControl (0, APISetDebugOut, (unsigned char *) testDebugOut);

 ...

 #define MAX_DBG_MSG_LENGTH 255

 void
 testDebugOut (char *format_str, ...)
 {
 char line[MAX_DBG_MSG_LENGTH + 1];

 /*
 Format the output string and parameters,
 in the same manner as printf()
 */

 va_list marker;
 va_start (marker, format_str);
 _vsnprintf (line, MAX_DBG_MSG_LENGTH, format_str, marker);
 va_end (marker);

 36

 /*
 Output the string
 */

 printf (line); /* (or use a custom output function) */
 }

 37

APISetOpenDelay

Purpose:

This command sets the delay, in seconds, required between successive IateOpen calls.
Do not set this delay to less than 10 seconds.

It takes time to close down a TCP/IP socket gracefully. Rapidly opening and closing sockets
may be inefficient on the system and network, and may cause problems on some systems.

The API enforces a minimum time between consecutive IateOpen calls.
The interval required between successive IateOpen calls can be adjusted using
IateControl with the APISetOpenDelay command.

Arguments:

The first argument to IateControl is zero.
The second argument is the APISetOpenDelay command.
The third argument specifies the delay time.
The delay time should not be set to less than 10 seconds.

Example:

 short val = 10;
 IateControl (0, APISetOpenDelay, (unsigned char *) &val);

 38

APISetTO

Purpose:

This command sets or disables a timeout for IateRead.

When the application calls IateRead, the call will return after message data becomes
available from the host, or the read timeout expires (whichever occurs first).

The read timeout defaults to 1 second. The application can use APISetTO
to control the timeout, as described below.

If the blocking interval expires with no message received, the call to IateRead
returns zero.

Arguments:

The first argument to IateControl specifies the TA object connection to which this
command applies.

If the first argument is zero, this command does not immediately affect any currently
open session. However, this command sets default timeout values for any future
sessions created through subsequent calls to IateOpen.

The second argument to IateControl is the APISetTO command.

The third argument to IateControl specifies the timeout period, using a timeval structure.
In that structure, the tv_sec field can specify the number of seconds, and the tv_usec field
can specify an additional number of microseconds. Three different modes can be specified:

 • If tv_sec and/or tv_usec are not zero, subsequent calls to IateRead will return after the
 specified timeout, or after data arrives (whichever comes first).

 • If both the tv_sec and tv_usec fields are zero, subsequent calls toIateRead will return
 immediately, regardless of whether or not any data has been received.

 • If the third argument is NULL, the APISetTO command disables the read timeout.
 In this mode, calls to IateRead will not return until message data becomes available
 from the host.

 39

Caution:
A blocking interval of one second or less may cause some inaccuracy in the
amount of time that IateRead waits for data. IateRead may return with no data
before the blocking interval has expired.

See Also:

 APIResetLock

Example:

 #include <time.h>

 struct timeval to;

 /*
 The following example sets a blocking interval of 1 second.
 (Note that IateRead might return with no data
 before 1 second has elapsed.)
 */

 to.tv_sec = 1;
 to.tv_usec = 0;
 IateControl (refnum, APISetTO, (unsigned char *) &to);

 /*
 The following example sets a blocking interval of 100 microseconds.
 IateRead will complete when a message is available
 or after 100 microseconds have expired, whichever comes first.)
 */

 to.tv_sec = 0;
 to.tv_usec = 100;
 IateControl (refnum, APISetTO, (unsigned char *) &to);

 40

APISetMsg

Purpose:

This command puts a TA object connection into “Message Mode”.
In Message Mode, IateRead returns after receiving a complete data message of
one or more segments, up to and including a segment that ends with the EOMC
indicator (End of Message, Complete), or EOMU (End of Message, Unsolicited).

If the application does not issue this command, the TA object connection
will remain in “Segment Mode” by default. In Segment Mode, IateRead
returns as soon as a received data segment becomes available,
without waiting for completion of a multi-segment message.

It is generally advisable to use Segment Mode rather than Message Mode,
for reasons such as those explained below.

Caution:
It is not appropriate to use Message Mode (and Auto-Answer mode)
if the application must acknowledge the individual segments of an incoming message.

For example: If the application serves a printer TA object to generate tickets or
other critical output, the application may be required to acknowledge each segment
after it is printed, as a form of end-to-end assurance. (This requirement applies to
SABRE “protected mode” printer connections.)

In such cases, the Message Mode should not be enabled, and the Gateway's
Auto-Answer mode should not be enabled. (See APISetAutoAns.)

Another possible reason to avoid Message Mode is that the accumulation of an
entire message may sometimes exceed the API's buffer capacity.

Arguments:

The first argument to IateControl specifies the TA object connection to which
this command applies. The second argument is the APISetMsg command.
The third argument is ignored and should be zero.

 41

See Also:

APISetSegment

Example:

 IateControl (refnum, APISetMsg, (unsigned char *) 0);

 42

APISetSegment

Purpose:

This command puts a TA object connection into “Segment Mode”.
In Segment Mode, IateRead returns as soon as a received data segment
becomes available, without waiting for completion of a multi-segment message.

This is the default mode; APISetMsg selects the alternative mode.
It is generally advisable to leave the connection in Segment Mode.
(For more information, see APISetMsg and APISetAutoAns.)

Arguments:

The first argument to IateControl specifies the TA object connection to which
this command applies. The second argument is the APISetSegment command.
The third argument is ignored and should be zero.

See Also:

APISetMsg

Example:

 IateControl (refnum, APISetSegment, (unsigned char *) 0);

 43

APISetAutoAns

Purpose:

This command turns on the Gateway's “Auto-Answer” mode, for automated
acknowledgments. This instructs the Gateway to send segment acknowledgments
to the host automatically, immediately after the gateway receives each segment.

The Auto-Answer mode is required when operating in Message Mode
(after an APISetMsg call). However, Message Mode and Auto-Answer
are generally not advised, for reasons such as those explained below.

Caution:
It is not appropriate to use Message Mode and Auto-Answer mode
if the application must acknowledge the individual segments of an incoming message.

For example: If the application serves a printer TA object to generate tickets or
other critical output, the application may be required to acknowledge each segment
after it is printed, as a form of end-to-end assurance. (This requirement applies to
SABRE “protected mode” printer connections.)

In such cases, the Message Mode should not be enabled, and the Gateway's
Auto-Answer mode should not be enabled.

The APISetAutoAns command affects only the specified TA object connection
on which the application issues the command.

The Gateway also has an AUTO_ANSWER configuration item. Specified in a
Gateway configuration file, AUTO_ANSWER determines whether the auto-answer mode
is turned on or off by default, for all of the connections defined in that configuration file.
“AUTO_ANSWER 1” enables Auto-Answer. “AUTO_ANSWER 0” disables it, and
that is the default setting. (Refer to IATE Gateway documentation for more information.)

If the application does not issue APISetAutoAns, and if the AUTO_ANSWER
option is not specified in Gateway configuration (or if it is set to 0),
the Auto-Answer mode will be disabled.

 44

Arguments:

The first argument to IateControl specifies the TA object connection to which
this command applies. The second argument is the APISetAutoAns command.
The third argument points to a character which should contain a nonzero value
to turn the option on.

See Also:

 APISetNoAns

Example:

 unsigned char x = 1;
 IateControl (refnum, APISetAutoAns, &x);

 45

APISetNoAns

Purpose:

This command turns off the Gateway's “Auto-Answer” mode. This prevents
the Gateway from sending segment acknowledgments to the host automatically.

If the Auto-Answer mode is turned off, the application must use IateControl with the
APISendAck command to acknowledge each received segment. The Gateway
sends a segment acknowledgment to the host after the application uses APISendAck.

This command is appropriate for any TA object requiring end-to-end
segment-delivery assurance, such as a ticket printer TA.

This command affects only the specified TA object connection. The Gateway
also has an AUTO_ANSWER configuration item. That option, specified in a
Gateway configuration file, determines whether the auto-answer mode is turned
on or off by default, for all the connections defined in that configuration file.
(See the IATE Gateway documentation for information on Gateway configuration.)

Arguments:

The first argument to IateControl specifies the TA object connection to which
this command applies. The second argument is the APISetNoAns command.
The third argument is ignored and should be zero.

See Also:

APISetAutoAns

Example:

 IateControl (refnum, APISetNoAns, (unsigned char *) 0);

 46

APIGetTaProt

Purpose:

This command finds out whether or not the specified object is associated with a
SABRE protected printer TA. This function applies to SABRE connections only.

Arguments:

The first argument to IateControl specifies the TA object connection to which
this command applies. The second argument is the APIGetTaProt command.
The third argument is ignored and should be zero.

Example:

 ret = IateControl (refnum, APIGetTaProt, (unsigned char *) 0);
 if (ret >= 0)
 printf(
 "TA %s in protected mode",
 ret ? "is" : "is not");

 47

APIGetTaCCC

Purpose:

This command finds out whether or not the segment checksum (CCC) validation succeeded
on the most recent message or segment received from the host.

The CCC validation status also available in the control-buffer returned with each message or
segment from IateRead. If the application checks that status from IateRead, it may not be
necessary to use APIGetTaCCC. Refer to the discussion of IateRead for details.

Arguments:

The first argument to IateControl specifies the TA object connection to which this
command applies. The second argument is the APIGetTaCCC command.
The third argument is ignored and should be zero.

Returns:

IateControl returns a value of zero or greater to indicate that the checksum
validation succeeded, or a negative value to indicate that the validation failed.

If the validation succeeded, the segment contains valid data.
If the validation failed, the segment is corrupt, and the application should not use it.

Example:

 ret = IateControl (refnum, APIGetTaCCC, (unsigned char *) 0);
 if (ret >= 0)
 printf ("CCC was %s on last message ", ret ? "GOOD" : "BAD");

 48

APIGetHostStat

Purpose:

This command retrieves host connection status information. The meaning of the returned status
information depends on the type of host connection, as noted below.

Arguments:

The first argument to IateControl specifies the TA object connection to which this
command applies. The second argument is the APIGetHostStat command. The third
argument specifies a buffer in which this call returns a host connection status value.

Returns:

For ALC connections,
the returned status information is as follows:

 The status value indicates the current state of the IA polling state and the
 host line's modem control signals. (The required modem control signals include
 DCD, DCR, and/or CTS, depending on Gateway configuration.)

 If the host connection's required modem signals are up and the IA is being polled.
 the IateControl return value is 1, and the status value returned in the buffer
 is 701 hexadecimal.

 If the host connection's required modem signals are not all up, or the IA is not currently
 being polled, the IateControl return value is 0, and the status value returned in the buffer
 has a value other than 0x701.

 The host status bit mask values, which provide detailed status information,
 are described in file “U_API.h” (see Appendix J).

 49

For TCP or X.25 host connections,
the status value returned in the buffer has the following meanings:

 • 0 (zero):
 The host connection is not available.
 (The application should not send data while the connection is unavailable.)

 • 701 hexadecimal:
 The host connection is available and operational
 (insofar as the Gateway is able to verify).
 The application is permitted to send data messages.

 • If the returned status buffer contains any other value:
 The host connection may be, or may not be available and operational.

 The application is permitted to send data messages, even though the
 host connection may not be operational. If the Gateway’s connection to the
 host has been lost, messages cannot immediately reach the host, but the
 Gateway will attempt to re-establish the connection and then send the messages.

 To verify message delivery, the application should check for any expected
 responses from the host. If the application receives no response from the host
 (within a reasonable time period after sending a message), this may indicate
 that the host is currently not available for communications.

If an error occurs in the course of obtaining the host connection status information,
IateControl returns a negative error code. Refer to Appendix A for information
about IATE API error values and their causes.

Example:

 long status;

 ret = IateControl (refnum, APIGetHostStat, (unsigned char *) &status);
 if (ret >= 0)
 printf ("APIGetHostStat returned %d, status code %04X", ret, status);

 50

APIGetTaStat

Purpose:

This command finds out whether or not the API has received any host messages
or segments which the application can retrieve immediately using IateRead.

In general it is more efficient to simply use IateRead and process any data received,
without using APIGetTaStat.

The behavior of this command depends in part on whether the channel is in
Segment Mode or Message Mode. (See APISetSegment and APISetMsg.)

Arguments:

The first argument to IateControl specifies the TA object connection to which this
command applies. . The second argument is the APIGetTaStat command. The third
argument is ignored and should be zero.

Returns:

IateControl returns a value of zero or greater to indicate the number of segments
that the API has received, which the application can retrieve immediately using IateRead.

Even if IateControl returns a positive value to indicate an available message,
a subsequent call to IateRead may return zero, indicating no data received.
This behavior is caused by message queuing logic in the API.
In general it is more efficient to simply use IateRead
and process any data received, without using APIGetTaStat.

If an error occurs, IateControl returns a negative error code.
Refer to Appendix A for information about IATE API error values and their causes.

See Also:

 APISetSegment
 APISetMsg

 51

Example:

 ret = IateControl (refnum, APIGetTaStat, (unsigned char *) 0);
 if (ret >= 0)
 printf ("There are %d messages waiting to be read", ret);

 52

APIGetTaThrottle

Purpose:

This command finds out whether or not sufficient time has elapsed between IateWrite calls,
so that the application may issue the next IateWrite call on the specified connection.

After an application calls IateWrite on a given object connection, the API will not
accept another IateWrite on the same object, until the API Throttle Interval
time period has elapsed.

The Gateway configuration item API_THROTTLE_INTERVAL sets the throttle
interval time. Its default value is one second.

Arguments:

The first argument to IateControl specifies the TA object connection to which this
command applies.

Returns:

IateControl returns a value greater than zero if the throttle interval has elapsed,
and the application can call IateWrite on the specified object. IateControl returns
zero if the throttle interval has not yet elapsed since the application's last call to
IateWrite on this object.

If an error occurs, IateControl returns a negative error code.
Refer to Appendix A for information about IATE API error values and their causes.

Example:

 ret = IateControl (refnum, APIGetTaThrottle, (unsigned char *) 0);
 if (ret >= 0)
 printf(
 "IateWrite %s be issued on connection %d at this time",
 ret ? "may" : "may not",
 refnum);

 53

APIGetObjectConfig

Purpose:

This command retrieves Gateway configuration information for the specified TA object.
This information is available only after the application has successfully connected to the
object by using IateOpen.

Arguments:

The first argument to IateControl specifies the TA object connection to which this
command applies. The second argument is the APIGetObjectConfig command.
The third argument is a buffer in which this command returns the configuration information
(struct u_link_response).

Example:

 #include "U_APItypes.h"

 struct u_link_response config;
 IateControl (refnum, APIGetObjectConfig, (unsigned char *) &config);

Following is a listing of struct u_link_response:

 struct u_link_response
 {
 char
 iata_str[10]; /* IA and TA (ALC values) */

 unsigned short
 protocol, /* host type, defined in U_CMNhos.h */
 throttle_limit, /* time between IateWrites,
 set in gateway configuration file */
 port; /* port number (for ALC), defaults to 0 */
 board; /* board number (for ALC), defaults to 0 */

 char
 server_ver[10]; /* server version */

 unsigned char

 54

 asc_eompb, /* EOM characters defined in serverde.h */
 asc_eomc,
 asc_eomu,
 asc_eomi;

 unsigned char
 alc_ia, /* IA */
 alc_ta; /* TA */

 short
 object_type; /* object type:
 1: TERMINAL
 2: PRINTER
 3: TERMINAL_API
 4: PRINTER_API */
 short
 gate_type; /* gateway type:
 1: Windows or UNIX gateway
 2: Mac gateway */

 char
 object_name[MAX_CLIENT_NAME+2];
 /* name of object */

 unsigned char
 answer_back_rules,
 expect_aid, /* AID character for CPARS */
 default_aid, /* starting inbound AID for CPARS */
 fill[1];
};

 55

APISendAck

Purpose:

This command instructs the Gateway to send a message/segment acknowledgment
to the host, if necessary.

Arguments:

The first argument to IateControl specifies the TA object connection to which this
command applies. The second argument is the APISendAck command.
The third argument is a character value which specifies the acknowledgment type,
which may be either NORMAL_ANS or UNABLE_TO_ACCEPT.

The IATE header file iate_pub.h defines NORMAL_ANS and UNABLE_TO_ACCEPT,
among several other acknowledgment values. The application should only use one of
these two values with this command.

 #define NORMAL_ANS '0' /* positive acknowledgment */
 #define UNABLE_TO_ACCEPT '4' /* negative acknowledgment */

An application handling traffic for a printer or ticket-imaging object uses APISendAck
to acknowledge each segment.

Example:

Following is sample code for receiving and acknowledging messages while in
Segment Mode. This sample program links to a printer object, receives printer data,
acknowledges it, and writes it to a file.

 56

 /* ------------------------ sendack.c ------------------------- */

 #include <fcntl.h>
 #include <winsock.h>
 #include <stdio.h>

 #include "U_API.h"
 #include "U_APItyp.h"
 #include "U_APIpros.pro"

 /* The following functions, defined in this example,
 * will also be used by other sample programs in this document.
 */
 void Setup (void);
 void Connect (void);
 void Disconnect (void);
 int userBreak (void);

 /* Parameter values for APISendAck
 */
 #define NORMAL_ANS '0'
 #define UNABLE_TO_ACCEPT '4'

 /* Parameter values for APIPrinterStat
 */
 #define PAVAIL "1"
 #define PUNAVAIL "0"

 /* Connection specifier for IateOpen, to
 * connect to a printer object named "printer02"
 * on gateway host system "gw2"
 */
 unsigned char
 connection_specifier[] = "@gw2\\ialcserver\\printer02";

 /* IATE session reference number
 */
 long refnum;

 /* Buffers for messages received via IateRead
 */
 unsigned char
 buff[MAX_BUFF_SZ], /* message buffer */
 ctrl[CTRL_BLK_SZ]; /* control block:C1,C2,EOMx,CCC_OK,MORE */
 /* (See the IateRead documentation) */

 main()
 {
 long ret,
 nchars;

 int fd;

 57

 unsigned char ack;

 fd = open("printer.log", O_WRONLY | O_CREAT);

 if (fd < 0)
 {
 printf("Can't open printer.log file for writing");

 exit(1);
 }

 /*
 * The Setup() function sets the API diagnostic level of 0x2ff,
 * and sets the minimum time required between successive
 * IateOpen calls to 10 seconds.
 *
 * The Connect() function calls IateStart,
 * sets the IateRead blocking interval to 10 seconds,
 * requests a connection to the printer object,
 * and tells the Gateway that the printer is available.
 */

 Setup();
 Connect();

 58

 /*
 * Read messages from the host, acknowledge them,
 * and write them to a file.
 */

 while (!userBreak())
 {
 /*
 * Read a message from the host.
 */

 nchars = IateRead(refnum, MAX_BUFF_SZ, buff, ctrl);

 /*
 * IateRead returns the number of characters in the
 * host message, plus 2 control characters.
 * Refer to the IateRead documentation.
 */

 if (nchars < 0)
 ack = UNABLE_TO_ACCEPT;
 else
 {
 /*
 * A valid message segment checksum indicator
 * is equal to '1' (0x31). If the checksum indicator
 * value is '0' (0x30), it indicates an invalid segment.
 */

 if (ctrl[CTRL_CCC_OK] == 0x31)
 {
 ret = write(fd, buff, nchars-2);

 ack =
 (ret == (nchars-2))
 ? NORMAL_ANS
 : UNABLE_TO_ACCEPT;
 }
 }

 /*
 * The printer needs to acknowledge each received segment,
 * by sending an APISendAck, whether the segment is
 * valid or not.
 */

 IateControl(refnum, APISendAck, &ack);

 if (ack == NORMAL_ANS)
 printf ("Host message written to log file.\n");

 }

 59

 /*
 * Disconnect from the Gateway and API
 */

 Disconnect();
 }

 /*
 * The Setup() function sets the API diagnostic level of 0x2ff,
 * and sets the minimum time required between successive
 * IateOpen calls to 10 seconds.
 */

 void
 Setup ()
 {
 long x;

 short val;

 /*
 * Set the API Debugging verbosity level.
 * (Refer to Appendix G.)
 */

 x = 0x2ff;
 IateControl(
 (long) 0,
 APISetApiDebug,
 (unsigned char *) &x);

 /*
 * Set the API Open Delay time.
 */

 val = 10; /* seconds */
 IateControl(
 (long) 0,
 APISetOpenDelay,
 (unsigned char *) &val);
 }

 60

 /*
 * The Connect() function calls IateStart,
 * sets the IateRead blocking interval to 10 seconds,
 * requests a connection to the printer object,
 * and tells the Gateway that the printer is available.
 */

 void
 Connect ()
 {
 struct timeval to;

 /*
 * Initialize the API.
 */

 startcode = IateStart(1, 0, (unsigned char *) "");

 if (startcode < 0)
 {
 printf(
 "IateStart failed (error %d)\n",
 startcode);

 exit(2);
 }

 /*
 * Open a connection to the printer object.
 */

 refnum =
 IateOpen(
 startcode,
 APILinkToName,
 connection_specifier);

 if (refnum < 0)
 {
 printf("\nIateOpen failed (error %d)\n", refnum);
 IateStop(startcode);

 exit(3);
 }

 61

 /*
 * Set the IateRead blocking interval to 10 seconds.
 */

 to.tv_usec = 0;
 to.tv_sec = 10;

 IateControl(
 refnum,
 APISetTO,
 (unsigned char *) &to);

 /*
 * Tell the Gateway that the printer is available.
 */

 IateControl(
 refnum,
 APIPrinterStat,
 (unsigned char *) PAVAIL);
 }

 /*
 * The Disconnect() function disconnects the
 * application from the Gateway and API.
 */

 void
 Disconnect (void)
 {
 /*
 * Set printer status to 'unavailable'
 */

 IateControl(
 refnum,
 APIPrinterStat,
 (unsigned char *) PUNAVAIL);

 /*
 * Close the printer object connection
 */

 IateClose(refnum);

 /*
 * Terminate this application's use of the API
 */

 IateStop();
 }

 62

 /*
 * The userBreak() function should return a nonzero value
 * if the user has requested termination of the program.
 * After this function returns nonzero,
 * the caller should terminate the program gracefully.
 */

 int
 userBreak(void)
 {
 /*
 * The body of this function is not shown here.
 * The means of detecting user input depends on the
 * platform (Windows or UNIX), the type of application,
 * and choice of implementation.
 *
 * For example, in a console program, this function could
 * work with a signal handler to detect a Ctrl-C keystroke.
 * After the user presses Ctrl-C to terminate the program,
 * this function would return nonzero, and the caller
 * would proceed to terminate the program.
 */

 /*
 * ... Insert code here, to return nonzero
 * if the user has requested program termination ...
 */

 return 0;
 }

 /* -- */

 63

APIPrinterStat

Purpose:

The APIPrinterStat command sends printer status information to the Gateway.

Any application that opens a printer TA object, and processes print data from
the host, should use this command. A “printer TA object” is one specified
with type PRINTER or PRINTER_API in the IATE Gateway's configuration,
corresponding to a printer TA as defined in the airline host system.

The application informs the Gateway as to whether or not the destination
output device is ready to process data messages from the host.
The destination device may be a printer, or some other device being used
in place of a printer -- wherever the application sends the 'printed' data.

If the output destination device is known to be always available --
or if the application has no way to obtain its current status --
the application may choose to issue APIPrinterStat with PAVAIL
just once, to declare the object permanently available.

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to set the printer status.

The second argument to IateControl is the APIPrinterStat command.

The third argument to IateControl specifies the status value:
nonzero to indicate that the printer destination is available
for messages, or zero to indicate that it is not available.
See the example below.

 64

Example:

 /* Status values for APIPrinterStat:
 */
 #define PAVAIL "1" /* printer available */
 #define PUNAVAIL "0" /* printer unavailable */

 /* Tell the Gateway that the printer is available or not:
 */
 if (printerAvail()) /* <-- a function defined by the application */
 {
 IateControl (refnum, APIPrinterStat, (unsigned char *) PAVAIL);
 }
 else
 {
 IateControl (refnum, APIPrinterStat, (unsigned char *) PUNAVAIL);
 }

 65

APInoTaTimeout

Purpose:

The APInoTaTimeout command disables the Gateway's “TA timeout” for the specified object.
This command works only if the Gateway has not been configured to expect “heartbeat”
keep-alive messages from the application. (By default the Gateway does not expect heartbeats.)

The Gateway's TA_TIMEOUT configuration item specifies the TA Timeout in minutes. This
timeout can be specified in the Gateway configuration file.

If the TA Timeout elapses with no messages sent from the application, the Gateway may
disconnect the application. If the application issues the APInoTaTimeout command, this can
prevent such disconnection.

The purpose of the Heartbeat option is to detect a “crashed” application's failure to disconnect
from the Gateway. Contrast this to the TA Timeout, the purpose of which is to protect against
idle applications keeping TAs occupied. See APISetHeartbeat for more information about
heartbeats.

When expecting heartbeats, the Gateway does not use the TA Timeout, because the 60-second
heartbeat timeout overrides it.

Arguments:

The first argument to IateControl is the reference number of the TA object connection on which
to disable the TA Timeout.

Example:

 IateControl (refnum, APInoTaTimeout, 0);

See Also:

 APISetHeartbeat

 Gateway configuration items:
 TA_TIMEOUT
 HEARTBEAT_REQUIRED

 66

 67

APIGetVersion

Purpose:

The APIGetVersion command retrieves a text string containing the the API version number.

Arguments:

The first argument to IateControl should be zero for this command, because this command
does not operate on a specific TA object.

The second argument to IateControl is the APIGetVersion command.

The third argument to IateControl specifies a buffer to receive the version string.
The buffer should be at least 9 bytes in length.

Returns:

Current versions of the API return a version string in the form "2.XX.YY",
where XX and YY are numeric values which will depend on the version installed.

The initial value 2 indicates that the running API is a member of the
second generation of IATE API releases. The XX value indicates the
major incremental release level, and the YY value indicates the
minor incremental release level.

Example:

 char buff[9];
 IateControl (0, APIGetVersion, buff);
 printf ("API version %s\n", buff);

 68

APISetHeartbeat

Purpose:

The APISetHeartbeat command tells the API whether or not to allow the application to trigger
“heartbeat” (keep-alive) messages to the IATE Gateway.

If the API uses this command to enable heartbeats, then the client application must use the
APIStart1min command to send heartbeats to the Gateway.

If the Gateway's HEARTBEAT_REQUIRED configuration option is turned on, the Gateway
expects the client application to send periodic heartbeat messages. If the Gateway's
HEARTBEAT_REQUIRED option is turned off, the Gateway will not expect heartbeat
messages from the client , unless the client begins to send them.

When the Gateway expects heartbeats, the client application should send heartbeats and/or
data messages at periodic intervals no longer than 50 seconds (leaving a 10-second margin
under the 60-second time limit). If 60 seconds elapse with no message received from the client,
the Gateway disconnects the client.

The purpose of Heartbeats is to protect against idle applications keeping TAs occupied. Contrast
this to the TA Timeout, the purpose of which is to detect a “crashed” application's failure to
disconnect from the Gateway. See APISetTO for information about the TA Timeout.

When expecting heartbeats, the Gateway does not use the TA Timeout configuration item,
because the 60-second heartbeat timeout overrides it.

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to set the Heartbeats option.
The second argument is the APISetHeartbeat command.
The third argument is nonzero to enable heartbeats,
or zero to disable them.

See Also:

 APIStart1min

 Gateway configuration item:

 69

 HEARTBEAT_REQUIRED

Examples:

To enable heartbeats:

 short val = 1; /* 1 = enable */
 IateControl (refnum, APISetHeartbeat, (unsigned char *) &val);
 ...
 ...
 IateControl (refnum, APIStart1min, 0);
 /* (periodically at intervals less than 60 seconds) */

To disable heartbeats:

 short val = 0; /* 0 = disable */
 IateControl (refnum, APISetHeartbeat, (unsigned char *) &val);

 70

APIStart1min

Purpose:

The APIStart1min command sends a heartbeat message to the Gateway.

If the application will use APIStart1min, the application
must first use APISetHeartbeat to enable heartbeat transmission.

See also:

 APISetHeartbeat

Example:

IateControl (refnum, APIStart1min, (unsigned char *)"");

 71

APIResetLock

Purpose:

This command resets the API's write lock.

When an application calls IateWrite, the API ‘locks’ the session against further
writes. The application cannot issue another IateWrite on the session until:
(1) a call to IateRead returns a response message from the host, or
(2) the application issues APIResetLock.

It takes time for the host to respond to a message. Therefore, it is
recommended that the application wait for a time somewhat longer than the
host's typical response time. After waiting a reasonable amount of time
but obtaining no response, the application can reset the write lock if necessary.

Note for Windows platforms only:
APIResetLock flushes messages queued from the Gateway
to the host, for the object session specified by the first argument.
Alternatively, APIResetLocal can be used to reset the write lock
without flushing queues.

Note for UNIX platforms only:
APIResetLock does not flush the Gateway-to-host message queues.
However, APIForwardReset can be used to flush the message queues.

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to reset the write lock and flush message queues.
The second argument is the APIResetLock command.
The third argument is ignored and should be zero.

See also:

 APIResetLocal
 APIForwardReset
 APISetTO

 72

Examples:

 long refnum;
 IateControl (refnum, APIResetLocal, (unsigned char *) 0);

The following example demonstrates a typical use of APIResetLock
in a simplified messaging application.

 /* ----------------------- resetlock.c ----------------------- */

 #include <stdio.h>
 #include "U_API.h"
 #include "U_APItypes.h"
 #include "U_APIpros.pro"

 /* The following routines are defined in the APISendAck example.
 * These routines may need to be modified to suit this example.
 */
 void Setup(void);
 void Connect(void);
 void Disconnect(void);
 int userBreak(void);

 /* Connection specifier for IateOpen, to
 * connect to a terminal TA object named "term16"
 * on gateway host system "gw2"
 */
 unsigned char
 connection_specifier[] = "@gw2\\ialcserver\\term16";

 /* IATE session reference number
 */
 long refnum;

 /* Buffers for messages received via IateRead
 */
 unsigned char
 buff[MAX_BUFF_SZ], /* message buffer */
 ctrl[CTRL_BLK_SZ]; /* control block:C1,C2,EOMx,CCC_OK,MORE */
 /* (See the IateRead documentation) */

 main()
 {
 struct timeval to;
 long nchars;
 int ret;

 73

 unsigned char ack;

 /*
 * The Setup() function sets the API diagnostic level of 0x2ff,
 * and sets the minimum time required between successive
 * IateOpen calls to 10 seconds.
 *
 * The Connect() function calls IateStart,
 * sets the IateRead blocking interval to 10 seconds,
 * requests a link to the printer object,
 * and tells the Gateway that the printer is available.
 */

 Setup();
 Connect();

 /*
 * Set the IateRead blocking interval to 2 seconds (as an example).
 */

 to.tv_usec = 0;
 to.tv_sec = 2;
 IateControl (refnum, (long) APISetTO, (unsigned char *) &to);

 /*
 * Send messages to the host,
 * and read any responses from the host.
 */

 while (!userBreak())
 {
 /*
 * Send the host an empty message.
 * (This is only a simplified demonstration.
 * A useful application would send a non-empty message.)
 */

 ret = IateWrite (refnum, 0, (unsigned char *) "");
 if (ret < 0)
 break;

 /*
 * Wait for a response message, up to the amount of time
 * we specified through APISetTO above.
 *
 * If no response arrives within that amount of time,
 * then we must reset the API write-lock, in order to
 * allow subsequent calls to IateWrite.
 */

 nchars = IateRead (refnum, MAX_BUFF_SZ, buff, ctrl);
 if (nchars == 0)
 {

 74

 printf(
"No response received. Resetting the write lock ...\n");

 IateControl (refnum, APIResetLock, (unsigned char*) 0);
 }
 }

 /*
 * Disconnect from the Gateway and API.
 */

 Disconnect();
 }

 /* --- */

 75

APIResetLocal

Purpose:

APIResetLocal is similar to APIResetLock, but does not flush the
Gateway-to-host message queues. For details, please refer to
APIResetLock (above).

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to reset the write lock.
The second argument is the APIResetLock command.
The third argument is ignored and should be zero.

Example:

 long refnum;
 IateControl (refnum, APIResetLocal, (unsigned char *) 0);

 76

APIForwardReset

Purpose:

On Windows platforms, this command is equivalent to APIResetLock:
it resets the API write lock, and flushes Gateway-to-host message queues.

On UNIX platforms, where APIResetLock does not flush the message queues,
this command can be used to do so.

This call is implemented in Windows and Sun PCI gateways version 2.5 or later,
Windows API version 2.4.11 or later, and Sun PCI API version 2.4.9 or later.

Note:
It is recommended that applications periodically check the host connection status
by using APIGetHostStat. The application should stop sending messages
if the host connection has been lost. (It is not sufficient to reset the lock
and send additional messages without checking the host status.)

On Sun Sbus (not PCI) systems, APIForwardReset is ignored.

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to reset the write lock and flush message queues.
The second argument is the APIForwardReset command.
The third argument is ignored and should be zero.

Example:

 long refnum;
 IateControl (refnum, APIForwardReset, (unsigned char*) 0);

 77

APIWhoAmI

Purpose:

The APIWhoAmI command retrieves the IATE Gateway's information about the
type of the connected airline-host.

The information retrieved consists of a host type-code (a number)
and a host type-name (a string).

The host codes are defined in the header file U_CMNhos.h,
Host type names are defined in cmdnames.c.

Note:
Only the Macintosh Gateway supports the Uniscope, Codacom, and AC100
host types. The Windows and UNIX gateways do not support those host types.

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to obtain host type information.

The second argument to IateControl is the APIWhoAmI command.

The third argument to IateControl points to the string buffer in which
APIWhoAmI will return the host type name. The string buffer should be
at least 16 bytes long. Some additional space is recommended, to
accomodate any future host names which may be slightly longer.

Returns:

APIWhoAmI returns the host type code (as the IateControl function's
return value), and the host type name (in the string buffer given by the
third argument).

 78

Example:

 long refnum;
 char buff[32];
 ret = IateControl (refnum, APIWhoAmI, buff);

 printf("Host type \"%s\", #%d", buff, ret);

 79

Peer-to-Peer Messages

The following IateControl commands support peer-to-peer messaging:

 APIQueryApplMsg
 APIGetApplMsg
 APISendApplMsg

Peer-to-peer messages may be sent between any two objects
linked to a single gateway.

A sample application, sendpeer.c, has been provided as an example of
peer-to-peer messaging. Two instances of sendpeer.c, connected to two
different TA objects respectively, communicate through peer-to-peer messages.

To use the peer-to-peer sample, set up 2 objects on a gateway;
called (for example) “Object1” and “Object2”.

Start two instances of the sample program, using each of the two objects
to talk to the other one:

 sendpeer -c@HostName\\ServiceName\\Object1 -p@HostName\\ServiceName\\Object2
 sendpeer -c@HostName\\ServiceName\\Object2 -p@HostName\\ServiceName\\Object1

The -c command-line option specifies the source object, which is to send
a peer-to-peer message to the second object, specified by the -p option.

By default, the program takes message text from the keyboard.
Enter a line of text at the keyboard and press Enter, and the program
will attempt to send that text in a peer-to-peer message to the remote object.

If you wish to send a message from a file (instead of sending from the
keyboard), specify the -f option with the file-name. For example:

 sendpeer -c@Host\\Service\\Object1 -p@Host\\Service\\Object2 -fFileName1
 sendpeer -c@Host\\Service\\Object2 -p@Host\\Service\\Object1 -fFileName2

The API may break a long message into segments while transmitting it to the
Gateway and the peer object. The receiving peer should send back acknowledgment
messages which indicate whether or not the peer processed each segment successfully.
The sending peer’s API processes these acknowledgments and continues to send message
segments, until the entire message has been transmitted (or until an error occurs).

After transmitting the entire message to the peer (or after detecting an error),
the API passes the final acknowledgment code back to the sending application.
The acknowledgment code indicates success or failure.

 80

Peer-to-peer messages begin with the struct u_applmsghdr message structure,
defined in the U_APItypes.h header file.

The application sends and receives peer messages in a buffer which begins
with that structure, followed by the message data. The structure contains
a field (datalen) that indicates the length of the message data, and a
command code (cmmd) which indicates the type of message.

These peer-to-peer command codes are defined in the U_API.h header file:

 PTRdataMsgRsp A complete data message,
 or the final part of a multi-part data message.

 PTRcontMsgRsp The first part, or a continuation,
 of a multi-part data message.

 PTRrspDone Positive acknowledgment of a data message received.

 PTRrspOffline Negative acknowledgment: Printer is off-line.
 PTRprinterFail Negative acknowledgment: Printer failed.
 PTRnotAllowed Negative acknowledgment: Print not allowed on this TA.
 PTRbusy Negative acknowledgment: Printer is busy.
 PTRrspIOfail Negative acknowledgment: I/O failed.

 PTRforwardReset A “forward reset” control-message:
 flushes message traffic in one direction.

Positive acknowledgment messages have a command code of PTRdataMsgRsp.
The various command codes for negative acknowledgments are also listed above.
Acknowledgment messages have a zero value in the length field (datalen).
See APISendApplMsg for an example of a peer acknowledgment message.

Each of the following calls uses the message header (struct applmsghdr)
defined in U_APItypes.h.

 81

APIQueryApplMsg

Purpose:

This command checks to see if there is any peer-to-peer traffic available
for the application to retrieve.

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to check for peer-to-peer messages.
The second argument is the APIQueryApplMsg command.
The third argument is ignored and should be zero.

Returns:

IateControl returns zero if there is no peer message ready.

If a message is available, IateControl returns a value greater than zero.
The application can retrieve the message via APIGetApplMsg.

If an error occurs, IateControl returns a negative error code.
Refer to Appendix A for information about IATE API error values and their causes.

Example:

 ret = IateControl (refnum , APIQueryApplMsg, (unsigned char *) 0);
 if (ret > = 0)
 printf ("There %s peer messages waiting",

 ret ? "ARE" : "ARE NOT");

 82

APIGetApplMsg

Purpose:

The APIGetApplMsg command retrieves a peer-to-peer message.
The application supplies the buffer (buff) to receive the message.
The peer-to-peer message header (struct u_applmsghdr) comes first
at the beginning of the buffer, with length equal to APPLMSGHDR_SZ.
The message data follows the header, starting at offset APPLMSGHDR_SZ.

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to receive a peer-to-peer message.

The second argument to IateControl is the APIGetApplMsg command.

The third argument to IateControl is the address of the buffer in which to receive
a peer-to-peer message. The application initializes the data length field (datalen)
of the message header in the buffer, to MAX_BUFF_SZ (2015 characters).

Returns:

IateControl returns the total length of the peer-to-peer message received,
or zero if no message was received.

If a message was received, the returned length value includes the length
of the peer-to-peer message header (struct u_applmsghdr). The length of the
message data proper can be found in the header's length field (datalen).

A peer-to-peer message may arrive in multiple parts (or ‘segments’).
If the received message data is only the first of multiple segments,
the command field (cmmd) contains PTRcontMsgRsp, and the continuation
field (more) contains a nonzero value. Subsequent peer-to-peer message(s)
contain the subsequent parts of the data, and the final message of the series
has command code PTRdataMsgRsp.

 83

Example:

 char buff[MAX_BUFF_SZ];
 ...
 struct applmsghdr *pmhdr = (struct applmsghdr *) buff;
 pmhdr->cmmd = 0;
 pmhdr->datalen = MAX_BUFF_SZ;
 ret = IateControl (refnum, APIGetApplMsg, buff);

 84

APISendApplMsg

Purpose:

The APISendApplMsg command sends a peer-to-peer message.
The application supplies the buffer (buff) that contains the message.
The peer-to-peer message header (struct u_applmsghdr) comes first
at the beginning of the buffer, with length equal to APPLMSGHDR_SZ.
The message data follows the header, starting at offset APPLMSGHDR_SZ.

The maximum length of a message that can be sent at one time is 2015
characters of data (MAX_BUFF_SZ), plus the peer-to-peer header (APPLMSGHDR_SZ).

Arguments:

The first argument to IateControl is the reference number of the
TA object connection on which to send a peer-to-peer message.

The second argument to IateControl is the APISendApplMsg command.

The third argument to IateControl is the address of the buffer from which to
send a peer-to-peer message. The application initializes the data length field
(datalen) of the message header in the buffer, to indicate the length of the
message, up to MAX_BUFF_SZ (2015 characters).

Examples:

The sample program seedpeer.c, supplied with the IATE API software
distribution, demonstrates sending and receiving of peer-to-peer messages.

The following examples use the ExtractFromNameString function,
which can be found in the seedpeer.c sample program.
ExtractFromNameString extracts the Gateway host name,
TCP/IP service name, and TA object name from a null-terminated
string buffer formatted as follows:

 "@HostName\\ServiceName\\ObjectName"

In this example the application that sends a data message is using the

 85

TA object “Object1”. The application that receives the data message
is using the TA object “Object2”.

The application receiving the message must acknowledge it, by sending a
peer-to-peer acknowledgment message. The API for the sending application
receives and process the acknowledgment, without involving the sending
application. (The sending application itself does not receive the
peer acknowledgment, so it does not implement any logic to process
peer acknowledgments.)

This is example code for the sending application:

 struct applmsghdr
 *pmhdr = (struct u_applmsghdr *) buff;
 /* this buffer contains the peer-to-peer
 message header, followed by data */
 long nchars = strlen (buff);

 pmhdr->cmmd = PTRdataMsgRsp; /* command code for a data message */
 pmhdr->datalen = nchars; /* length of message data (after header) */
 pmhdr->more = 0; /* indicate that this message is complete */

 ExtractFromNameString (
 pmhdr->ToHostName, /* host name extracted from 4th argument */
 pmhdr->ToServerName, /* server name extracted from 4th arg. */
 pmhdr->ToObjectName, /* object name extracted from 4th arg. */
 "@HostName1\\ServiceName1\\ObjectName1");

 ExtractFromNameString (
 pmhdr->FromHostName, /* host name extracted from 4th argument */
 pmhdr->FromServerName, /* server name extracted from 4th arg. */
 pmhdr->FromObjectName, /* object name extracted from 4th arg. */
 "@HostName\\ServiceName\\Object2");
 /* send to Object2 (as an example only) */

 ret = IateControl (refnum, APISendApplMsg, buff);

This is example code for the application that receives and
acknowledges the data message:

 char buff[MAX_BUFF_SZ];

 struct applmsghdr
 *pmhdr = (struct applmsghdr *) buff;
 /* a buffer to receive a message
 and to send an acknowledgment */

 /* Receive a peer-to-peer data message: */

 86

 pmhdr->cmmd = 0;
 pmhdr->datalen = MAX_BUFF_SZ;
 ret = IateControl (refnum, APIGetApplMsg, buff);

 /* Send a peer-to-peer acknowledgment message: */

 ExtractFromNameString (
 pmhdr->ToHostName, /* host name extracted from 4th argument */
 pmhdr->ToServerName, /* server name extracted from 4th argument */
 pmhdr->ToObjectName, /* object name extracted from 4th argument */
 "@HostName\\ServiceName\\Object1");
 /* send to Object1 (as an example only) */

 pmhdr->cmmd = PTRrspDone; /* msg has arrived and printed */
 pmhdr->datalen = 0; /* data length is 0 for acknowledgements */
 pmhdr->more = 0; /* this is a complete message */

 ret = IateControl (refnum, APISendApplMsg, buff);

The foregoing example uses the PTRrspDone code for positive acknowledgment.
Additional acknowledgment command codes are defined in the U_API.h
header file, as described in the Peer-to-Peer Messages section above.

 87

APIForceSeperateSockets

Purpose:

This command forces the API to open a separate socket for each connection
to any TA object. This will guarantee a unique socket file-descriptor
associated with each object connection and reference-number.

A Windows application that opens multiple TA connections in separate threads
must use this command before the first call to IateOpen. If the application
does not turn on this option, the IATE API for Windows cannot support
multiple connections serving multiple application threads.

A UNIX application opens multiple TA connections in separate processes
must use this command before the first call to IateOpen. If the application
does not turn on this option, the IATE API cannot support multiple connections
serving multiple UNIX application processes.

Arguments:

The first argument to IateControl should be zero for this command, because
this command does not operate on a specific TA object.

The second argument to IateControl is the APIForceSeparateSockets command.

The third argument to IateControl is nonzero to turn on the separate
sockets option, or zero to turn it off. (The option is off by default,
so an application should have no need to turn it off explicitly.
Simply leave it off if it's not needed, or turn it on as shown below.)

Example:

 short x = 1; /* nonzero to turn on the separate sockets option: */

 IateControl (0, APIForceSeperateSockets, (unsigned char *) &x);

 88

Appendix A: Error Codes

This appendix explains the error codes returned by IATE API functions.

Error -2002: ServerUnreachable / NoServerError

Returned By: IateOpen

Explanation:

This error indicates that the API cannot connect to the Gateway host system.

One possible cause is that the application may have specified
an invalid Service Name in the name argument to IateOpen.
The application or its configuration should be modified to
issue IateOpen with a correct Service Name.

This error indicates that the requested connection has not been
established. The application should not call IateRead, IateWrite,
IateControl, or IateClose, on a session that has not been established.
If the application does so, the results are undefined, although
those functions might also return this error.

For example:
If the name argument to IateOpen was:

 @HostName\\ServiceName\\TaObjectName

then error -2002 means the ServiceName was invalid.
See Appendix I for more information about the Service Name.

See Also: Error -2204, HostUnreachable.

 89

Error -2003: OutOfBufferError

Returned By: IateOpen
 IateRead
 IateWrite
 IateControl
 IateClose

Explanation:

The API has run out of internal memory buffers. This should not happen
under normal conditions, but may occur because of inappropriate usage
of the API, or because of abnormal communication condtions between the
API and the Gateway.

To track down the cause of this error, begin by verifying that the
IATE Gateway appears to be functioning. The API Out-of-Buffers error
is sometimes a side-effect of a failure at the Gateway.

If the Gateway has reported an error or stopped operating,
the Gateway needs to be restarted; and if the trouble recurs,
the problem with the Gateway needs to be diagnosed.

If the Gateway appears to be functioning, but the API still reports
the Out-of-Buffers error, then investigate the application design.
Investigate the possibility that the application has overloaded the API
with continuous commands, or with message data sent or received.
(For example, this could possibly happen in an application that sends
terminal messages on a terminal TA and also receives printer traffic
from a printer TA.)

 90

Error -2004: ObjectUndefined / NameIsBad

Returned By: IateOpen

Explanation:

This error means that the IateOpen call failed because the requested
TA Object is not configured at the Gateway.

For IateOpen with the APILinkToName command (or the APILinkToDyCrt
or APILinkToDyPrt command), this error means that the specified Object Name
does not match any object name or group name in the Gateway's configuration.

For example, suppose the name argument to IateOpen was:

 @HostName\\ServiceName\\ObjectName

The IATE Gateway, running on the specified HostName, has a configuration file
associated with the specified ServiceName, but the specified ObjectName
(or group name) does not appear in that file's TA objects list.

Typically this indicates a spelling error in the ObjectName that the application
requested. In order to connect to the object successfully, the application must
specify a correct object name (or the name of an object-group) in the call to IateOpen.

In addition to the spelling, the upper or lower case of each letter should also match
the Gateway's configuration.

Object names should not contain any blank spaces. Object names should begin
with a letter or digit, and should contain only letters and digits, and possibly
underscores. Other characters or punctuation generally should not be used.

This error can also occur for the APILinkToTa command, which is used by
some legacy applications (not recommended for new ones). That command
specifies the IA number and TA number (rather than the name) of the object
to connect. If the Gateway has no object configured with that IA and TA,
IateOpen will return this error code.

 91

Error -2005: NameInUse

Returned By: IateOpen

Explanation:

For IateOpen with the APILinkToName command, this error indicates
that the specified TA Object Name matches one of the Gateway's configured
object names, but that object is already in use by an application.

Similarly, for the APILinkToDyCrt or APILinkToDyPrt command,
this error indicates that any objects matching the request were already
in use by an application.

A new connection to an object cannot be established while that
application is using it. Each TA object admits only one application
connection at a time. The object may become available again later,
when that application relinquishes the object by calling IateClose
(or when the Gateway disconnects from the application for time-out
or other reasons).

This error can also occur for Intercept-mode connections
(attempted with IateOpen and the APIInterceptName command),
if an application is already intercepting the specified object.
Each TA object admits only one intercepting application at a time.

 92

Error -2007: DataError

Returned By: IateOpen
 IateWrite

Explanation:

This error indicates one of the following conditions.
Upon receiving this error, it is the responsibility of
the application programmer or tester to determine
which of these cases applies:

1. Bad name argument to IateOpen:

 The name argument that the application passed to IateOpen
 did not contain a TA Object specifier following the
 Host Name and Service Name.

 In this case, the application should be corrected to supply
 a valid and complete name argument to IateOpen,
 in the required format:

 @HostName\\ServiceName\\ObjectName

2. Bad message argument to IateWrite:

 a) The application passed the NULL value in place of
 the message buffer argument to IateWrite, or

 b) The application passed a negative value
 in place of the message-length argument to IateWrite.

 In these cases, the application should be corrected to pass a
 valid message buffer, and nonnegative length value, to IateWrite.

 93

Error -2008: NotStartedError

Returned By: IateOpen
 IateRead
 IateWrite
 IateClose
 IateStop

Explanation:

An application has made one the IATE API calls listed above,
without first calling the IateStart initialization function.

The application should call IateStart before calling
any of the other IATE API functions.

 94

Error -2009: BadVersionError

Explanation:

The application is using a version of the IATE API
that is not compatible with the connected Gateway.
Check the version levels and verify correct IATE installation.
Reinstall IATE if necessary.

 95

Error -2010: DirectionViolation

Returned By: IateWrite

Explanation:

The application program issued IateWrite to send a new message,
but the API did not send this message, because the API is awaiting
the host response for the last message sent.

To avoid this error, the application should follow these rules:

1. After sending each message, normally the application will expect
 a response from the host, and should receive it through IateRead,
 before sending another message.

 The DirectionViolation error enforces a “lock” condition to
 guard against sending another message before receiving a response,
 because that is usually inappropriate.

2. The application may decide to send a new message
 even though no response has been received for the last one.

 (For example, the application might re-send a message after
 some time period, if the expected response did not arrive.
 Also, some interactive applications might allow their users
 to break the lock and send a new message at any time.)

 In such cases, the application can use the IateControl command
 APIResetLocal or APIForwardReset. This will remove the
 message-lock condition, allowing one subsequent IateWrite
 to send the next message without the DirectionViolation error.

 Every IateWrite call re-establishes the lock condition --
 so that, once again, the API rejects any subsequent IateWrite
 call on this session (with the DirectionViolation error) --
 until a response arrives, or until the application issues a
 reset command to break the lock.

(Continued on next page)

 96

See Also: Error -2103, APIOverrunErr

The direction-violation error and the API overrun error occur for different
reasons. They are not the same. The direction-violation error enforces
alternating transmission and reception of messages (the “direction rule”),
whereas the overrun error enforces a minimum time period between
transmissions (the “throttling rule”).

The application must therefore respect the direction rule
(to avoid the DirectionViolation error) as well as the
throttling time (to avoid the APIOverrunErr error).

 97

Error -2011: InterceptError

Returned By: IateControl:
 APIintrWriteInput
 APIintrWriteOutput

Explanation:

The application issued IateControl, with the APIintrWriteInput or
APIintrWriteOutput command, to write data on a TA object intercept channel.
The specified channel was invalid, or was not in intercept mode.

To avoid this error, the application must use the IATE API intercept
functions correctly. First, obtain a session through IateOpen with
the APIinterceptName mode argument. Then use IateControl with the
APIintrRouteInput and/or APIintrRouteOutput command, specifying
the INTRDIVERT or INTRBOTH mode. For more information, see
Appendix F: Sharing a TA.

The application must complete those preparations in order to establish
Intercept Mode operation on a TA object, before using APIintrWriteInput
or APIintrWriteOutput.

 98

Error -2101: APINoFreeChannel / TooManySessions

Returned By: IateOpen

Explanation:

An IateOpen call failed because the application already has
reached the maximum number of open sessions that the API can
support per application.

At this writing, current versions of the API support 253 sessions
per application. If the application attempts to open more than
253 sessions, this error will result.

The application cannot open any more sessions until it closes
one or more of the sessions that it has already opened.

See Also: Error -2218, TooManyConnections.

 99

Error -2102: APIBadChannel / InvalidRefnum

Returned By: IateClose
 IateControl
 IateRead
 IateWrite
 IateOpen (see notes below)

Explanation:

This error indicates that the application specified an invalid
Session Reference Number in a call to an IATE API function.

When the application calls IateOpen, the application must store the
reference number (a.k.a. “refnum”) that IateOpen returns.
IateOpen establishes a TA connection “session” and returns the
reference number to uniquely identify that session.
The application uses that reference number in all subsequent
IATE API calls for that session.

IateRead, IateWrite, IateClose, and most IateControl calls require
the application to specify the reference-number of an existing session.
These calls will return this error if the specified reference-number
does not match any active session.

IateOpen returns this error only if the caller specified a
session reference number in the call. Applications usually do not
specify a reference number in a call to IateOpen, since the most common
usage of IateOpen is to obtain a new session and a new reference number.
But the application may specify an existing reference number in order to
'reconnect' to an active session. If the specified reference number
does not refer to any existing session, then the call returns this error.

 100

Error -2103: APIOverrunErr

Returned By: IateWrite

Explanation:

This error indicates that the application, after issuing an IateWrite call,
issued a second IateWrite call too soon, before the “API Throttle” time period
had elapsed.

IATE Gateway configuration defines the API throttling time period.
This is the minimum time period between the application's successive
message transmissions through IateWrite, on each session.

After calling IateWrite, the application should not call IateWrite again
on the same session, until the throttling time period has elapsed.

For more information on throttle-interval configuration at the Gateway,
see the IATE Gateway documentation for the API_THROTTLE_INTERVAL
configuration item.

At any time, if the application needs to find out whether or not IateWrite
is disallowed due to throttling, one way to find out is to call IateControl
with the APIGetTaThrottle command. The return value tells whether or not
IateWrite is disallowed due to throttling. (See the discussion of
APIGetTaThrottle, elsewhere in the API documentation.)

If the application wishes to override throttling on a session,
it may do so by calling IateControl with the APInoThrottle command.
This will disable the throttling check, preventing the APIOverrunErr
error from occurring on the specified session.

(Continued on next page)

 101

See Also: Error -2010, DirectionViolation.

The direction-violation error and the API overrun error occur for different
reasons. They are not the same. The direction-violation error enforces
alternating transmission and reception of messages (the “direction rule”),
whereas the overrun error enforces a minimum time period between
transmissions (the “throttling rule”).

The application must therefore respect the direction rule
(to avoid the DirectionViolation error) as well as the
throttling time (to avoid the APIOverrunErr error).

See Also: Error -2214, APIOpenBlocked.

The Open-Blocked error and the API Overrun error are similar in that
they both pertain to minimum intervals between certain API calls.
But these errors apply to two different API functions, and should not
be confused. The OpenBlocked error enforces a minimum interval between
IateOpen calls, whereas APIOverrunErr enforces a minimum interval between
IateWrite calls (on a particular open session).

 102

Error -2201: InternalLogicError

Explanation:

This error indicates an unexpected problem within the API or gateway software.
Please contact InnoSys if any IATE API function returns this error,
or if this error appears in an API debugging log file.

 103

Error -2205: HostUnreachable

Returned By: IateOpen

Explanation:

This error indicates that the IATE API cannot contact the Gateway
host system, which the application specified in the name argument to the
IateOpen call. Specifically, this error indicates that the specified name
is not recognized by the local system's network host name resolution facilities.

To resolve this error:

• Verify that the application specified the gateway host system name
 with correct spelling, in the name argument to IateOpen.

• Verify that the application host's network name resolution facilities
 can recognize and resolve the specified gateway host name.
 For example, use the ping utility, e.g. “ping hostname”,
 to verify name resolution and to check network connectivity
 to the specified host.

 Depending on system configuration, network host name resolution may
 involve DNS servers, WINS servers, NIS servers, and/or a local
 hosts-database file. If ncessary, consult your network administrator
 for assistance in verifying correct resolution of the gateway host name.

See Also: Error -2002, ServerUnreachable (a.k.a. NoServerError).

 104

Error -2207: SessionNotConfigured

Returned By: IateOpen

Explanation:

During an IateOpen call, The IATE API requests session configuration
information from the Gateway. This error indicates that the API
did not receive the requested configuration data.

This error may indicate a version mismatch between the IATE API and Gateway.
To resolve this error, verify that the connected IATE Gateway's software
version level is current and compatible with the version of the IATE API
that the application is using. Contact InnoSys if the error persists.

This error may also indicate network congestion. The API waits for a
limited time to receive an expected configuration response message:
If the wait time expires with no such response received,
the API will return this error.

 105

Error -2208: NoSocket

Returned By: IateOpen

Explanation:

During an IateOpen call, the IATE API attempts to contact the Gateway.
As part of the connection procedure, the API requests the local system
to allocate a connection endpoint, termed a “socket”. If the system's
network facilities cannot allocate the socket, the API returns this error.

To resolve this error, verify that the system's TCP/IP networking facilities
are correctly installed and operational. Also verify that the system's
networking and memory resources are not overloaded.
Contact your network administrator for assistance if necessary.

 106

Error -2209: CantConnectToServer

Returned By: IateOpen

Explanation:

During an IateOpen call, the IATE API attempts to contact the Gateway.
This error indicates that the API could not contact the Gateway,
for one of these possible reasons:

 • The API could not bind to a socket,

 • The API could not reach the Gateway host system,

 • The Gateway was not operational on that system,

 • The Gateway was not configured to listen on the TCP port
 corresponding to the service name that the application
 specified in the IateOpen call, or

 • A network-related or system-related problem
 prevented successful connection.

To resolve this error, verify the application host system's TCP/IP
connectivity to the Gateway host system, and verify that the Gateway
is operational on that system, and configured to listen on the TCP port
corresponding to the service name that the application specified in the
IateOpen call.

For example, if the application provided this name argument to IateOpen:

 @GatewayHost\ServiceName\TaObjectName

then the IATE API attempts to connect to the gateway on the specified
GatewayHost, using the TCP/IP port number corresponding to the specified
ServiceName. On the Gateway host system, the Gateway must be running and
configured to listen on the same port number.

If those requirements are satisfied but the error persists, check for other
network-related or system-related problems that might prevent successful
connection.

 107

Error -2210: UnexpectedMsgType

Returned By: IateControl
 IateRead
 IateWrite

Explanation:

This error indicates that the IATE Gateway returned a
message code that the IATE API cannot recognize.

This error may indicate a version mismatch between the IATE API and Gateway.
To resolve this error, verify that the connected IATE Gateway's software
version level is current and compatible with the version of the IATE API
that the application is using. Contact InnoSys if the error persists.

 108

Error -2211: WriteFailed

Returned By: IateOpen
 IateControl
 IateWrite

Explanation:

The WriteFailed error indicates that the API was unable to transmit information to the Gateway.
The API’s connection to the Gateway may have been lost. To recover from this error, the
application may need to close and reopen the session.

(The WriteFailed error only indicates a transmission problem between the API and a Gateway;
not between the Gateway and the airline host.)

If the IateOpen function returns the WriteFailed error, it indicates that the requested session
could not be opened, because the API could not transmit a request to the Gateway to open the
session. (The error can also be related to other internal messages involved in session startup,
depending on the IATE software version level.)

If the IateWrite function returns the WriteFailed error, it indicates that the API
could not transmit a data-message to the Gateway.

If the IateControl function returns the WriteFailed error, it indicates that the API
could not transmit a control-message, or a peer-data message, to the Gateway.
Details follow:

IateControl supports a variety of commands, many of which internally involve transmission
of control-messages to the Gateway. (These internal control-messages are not visible to the
application.) The WriteFailed error may occur with any such command, if the API could
not send the necessary control-message to the Gateway. This indicates that the IateControl
command that the application requested could not be completed.

IateControl also supports the APISendApplMessage command, which transmits a
peer-to-peer data message from the requesting application to a separate application on
another system. The WriteFailed error indicates that the API could not send the data
message to the Gateway.

 109

Error -2212: ReadFailed

Returned By: IateRead

Explanation:

The IateRead error indicates one of the following problems
preventing reception of data from the Gateway:

 • A socket read/receive function call failed,

 • The read operation returned insufficient data from the Gateway,

 • The connection to the Gateway terminated unexpectedly,

 • The Gateway timed out the TA and closed the socket, or

 • Gateway-to-API communications indicated a message length
 that exceeds the maximum length the API will accept.

For the first case above, the application can check APIerrno (in API version 2 and later),
to obtain the error code returned by the failed system call.

Some of these error cases may be caused by network problems, resource problems
at the application or Gateway systems, or Gateway software failure. Check the
status of the Gateway system, network connectivity, and the application system.

The last case above (a message-length error) should not occur, but if it
does occur, it may indicate a version mismatch between the IATE API
and the Gateway. Verify that the connected IATE Gateway's software
version level is current and compatible with the version of the IATE API
that the application is using.

 110

Error -2214: OpenBlocked

Explanation:

This error indicates that the application, after issuing an IateOpen call,
issued a second IateOpen call too soon, before the “Open Delay” time period
had elapsed.

The “Open Delay” is the minimum time period between the application's
successive calls to IateOpen. The default Open Delay time is 70 seconds.
After calling IateOpen, the application should not call IateOpen again
until this time period has elapsed.

If the application wishes to change the Open Delay time, it may do so by
calling IateControl with the APIsetOpenDelay command, specifying the
desired Open Delay time, in seconds. The application can specify
any delay time of no less than 10 seconds. For more information,
refer to the section discussing the IateControl APIsetOpenDelay command.

See Also: Error -2103, APIOverrunErr.

The Open-Blocked error and the API Overrun error are similar in that
they both pertain to minimum intervals between certain API calls.
But these errors apply to two different API functions, and should not
be confused. The OpenBlocked error enforces a minimum interval between
IateOpen calls, whereas APIOverrunErr enforces a minimum interval between
IateWrite calls (on a particular open session).

 111

Error -2215: SessionDisconnected

Returned By: IateRead
 IateWrite
 IateControl

Explanation:

This error indicates that the Gateway has disconnected the session.

After the Gateway disconnects a session, the application's next call
to IateRead, IateWrite, or IateControl will return this error.
(Internally, the network socket connection between the Gateway
and the API closes shortly afterward.)

The session that has been disconnected is the same one on which the
application called the API function. The API cannot complete the
requested read, write, or control operation, because the session
is no longer available.

Note:
If a disconnection occurs while an IateRead call is in progress
(awaiting data), that call may return zero (indicating no data),
without returning the SessionDisconnected error.
If the application subsequently calls IateRead, IateWrite,
or IateControl, on the same session, that subsequent call
will return the SessionDisconnected error.

 112

Error -2216: NotImplemented

Returned By: IateControl

Explanation:

The application issued an IateControl call containing a
command code that is either invalid or not implemented
by the running version of the API or Gateway.

The possible causes of this error are:

1. Version mismatch.
2. Incorrect IATE control code definitions.

To resolve this error, ensure the application is coded and tested to
work with the installed version of the IATE API, and that the connected
IATE Gateway is version-compatible with that release of API. Also ensure
that the application was compiled using the correct set of header files
supplied with that API release.

 113

Error -2217: TooMuchDataQueued

Returned By: IateControl:
 APIGetHostStat
 APIGetTaStat

This error indicates that too much data is queued in the API.
The API cannot complete the requested APIGetHostStat or
APIGetTaStat control operation.

This can happen if the application issues too many APIGetTaStat or
APIGetHostStat commands, without intervening IateReads, while the
API's internal buffers fill with data incoming from the Gateway.

To resolve this error, the application must call IateRead in order to free
some of the received data that the API is holding in its internal buffers.

A properly designed application avoids the TooMuchDataQueued error.

Background:
To check for received data on an open session, some applications
simply post a blocking IateRead call to wait for data.
This can work for a single-threaded application using a single session,
or for a multithreaded application using multiple sessions.

If the design requires that the application not block in IateRead,
or if a single-threaded application uses multiple sessions, the
application may use APIGetTaStat or APIGetHostStat to poll for data.
When APIGetTaStat or APIGetHostStat indicates that incoming data has
arrived on the session, the application should promptly call IateRead
to retrieve the data.

By retrieving the received data from the API promptly, the application
prevents overflow of the API's internal buffers. This prevents the
TooMuchDataQueued error.

(It is important to satisfy this requirement on all open sessions.
Even if the application retrieves data efficiently from a particular
session, API buffers can still overflow if the application fails to
retrieve data equally efficiently from other sessions. The well-designed
application maintains efficient data flow on all of its open sessions.)

 114

Error -2218: TooManyConnections

Explanation:

An API/Gateway connection attempt has failed because all the
available number of TCP/IP connections with the Gateway
have already been used.

(This differs from APINoFreeChannel / TooManySessions described below.
TooManyConnections reflects a limit on the number of socket connections
which can be opened, as opposed to the number of sessions with objects
that may be established.)

The operating system defines a limitation on the number of files an application
can have opened during a given process. This limit has been exceeded.

 115

Error -2404: InvalidTask

Explanation:

This error code is obsolete. It was used in previous API releases for Windows 3.1x.

 116

Appendix B: Background Information on the Gateway

This appendix describes the relationship between a terminal or printer object's
network address and its “object name” or “group name”.

Terminal and Printer Device Objects

Gateway configuration associates an individual terminal or printer address
with an “object name”. The address takes the form of an IA/TA or LNIA/TA
pair. (IA = Interchange Address, LNIA = Line/IA, TA = Terminal Address.)

The IateOpen API function call, given the APILinkToName option,
requests a connection to a terminal or printer object specified by
its unique "object name".

A collection of object names can be assigned a common "group name".
The IateOpen API function call, given the APILinkToName option,
can specify a “group name” to select any one of a named group of objects.

The APILinkToTa option requests the link using the IA and TA address of an
object, rather than the object name. The APILinkToTa parameters can also
include a port name, to specify a particular physical line if necessary.

Note:
APILinkToTa is supported only on TAs defined on ALC host connections,
and on some, but not all X.25 connections. It is strongly recommended that
the application use APILinkToName.

If an application connects to objects by Group names (rather than the
individual object names), the application may need to discover the
individual name of an object after connecting to it. For that purpose,
use APIGetObjectConfig, which returns information that includes
the name of the connected object.

The connection request may succeed if the object name is available,
not already in use by another application. A connection request that
specifies a group name will succeed if there is any object available
in the specified group.

In addition to an object name, an IA TA, and a group name,
each device address configured at the Gateway has a type.
The types are TERMINAL, PRINTER, TERMINAL_API and PRINTER_API.

 117

Dynamic Objects

Objects configured at the Gateway with type TERMINAL_API or PRINTER_API
are called “dynamic objects”.

• To connect to a TERMINAL_API dynamic object, the application
 uses IateOpen with the APILinkToDyCrt option.

• To connect to a PRINTER_API dynamic object, the application
 uses IateOpen with the APILinkToDyPrt option.

The application does not specify the name or address of a particular
dynamic object. Instead, the Gateway selects an available object
of the specified type.

The APILinkToDyCrt or APILinkToDyPrt parameters can also include a
port name, to specify a particular physical line if necessary.

 118

Appendix C: Description of Host Traffic

This appendix contains a brief description of the format of ALC host messages.
Most of this information applies specifically to ALC, not X.25 or TCP connections.
However, the information about the message control characters (“C1” and “C2”)
applies generally to all types of airline hosts.

The IATE API uses ASCII character codes. IATE user application programs
use ASCII character codes in message communications through the API.

The IATE Gateway uses ALC character code set in communications with
airline hosts that require it. The Gateway uses ASCII character codes in
communications with the API. Therefore, when delivering messages from
the API to the host, the Gateway translates them from ASCII to ALC;
and, when delivering messages from the host to the API, the Gateway
translates them from ALC to ASCII.

 Application <-----> API <-----> Gateway <-----> Airline Host
 ASCII ASCII ALC
 (depending on host type)

A message from the airline host may consist of one or more message-segments.
The airline host sends each ALC message segment to the Gateway in this format
or a similar format:

 Addressing Data End-of-Message Checksum

 IA TA C1 C2 Message-Text EOMc CCC
 EOMi
 EOMu
 EOMpb

The IA (Interchange Address) and TA (Terminal Address) determine the station address.

The C1 and C2 characters (a.k.a. “Command 1” and “Command 2”) often specify positioning
information, indicationg where the text of the message should be displayed on a terminal.
However, the exact meaning of C1 and C2 depend on the host type, the type of device
(terminal or printer) configured on a TA, and the message type. For details, refer to the
host system’s documentation.

 119

There are four valid EOM character values: EOMi, EOMc, EOMu, and EOMpb.
Each segment must contain one of these EOM characters (preceding the Checksum at the end).
The final segment of a message typically uses the EOMc character.

The EOM characters(s) contained in the final segment of a message are called final EOMs.
The EOM characters(s) contained in a multi-segment message’s first segment, or in any
intermediate segment, are called intermediate EOMs. Often EOMc and EOMu are used as
final EOMs, while EOMI and EOMpb are used as intermediate EOMs; however, this differs
on some systems.

The Checksum value (also called “CCC”) provides a confirmation code whereby the software receiving
a message can validate it mathematically, to find out if the message data was corrupted during
transmission. The user application need not be concerned with CCC code calculations.
When the application sends a message, the IATE software generates checksums as needed.
When the application receives a message, the IateRead function provides a CCC validation
result flag (a simple Boolean value) which the application can test.

When an application uses IateRead API function to receive message data, the returned message-buffer
contains the text of the message. The API removes the IA and TA values before returning the data to
the application. IateRead also returns another buffer, called the “control” buffer, which contains the
C1, C2, and EOM characters, and the CCC validation indicator.

 120

Appendix D: Sharing a TA

This appendix describes the Shared TA mechanism of the IATE Gateway.

An application using the IATE API connects to the airline host through
a TA Object configured at the Gateway. Message traffic passes through the
Gateway on its way from the airline host to the application, or vice versa.

A second application can ask the Gateway to “intercept” or “divert”
that message traffic. This is the Gateway's “Shared TA” mechanism.
The Shared TA mechanism's two modes have the following characteristics:

“Intercept” Mode

• In the “intercept” mode, the first application retains its connection to the host, and the
 second application shares it:

• When the first application sends a message to the host, the Gateway sends a copy of the
 message to the second application. Both the host and the second application receive the
 message.

• When the host sends a message to the first application, the Gateway sends a copy of the
 message to the second application. Both the first and second applications receive the
 message.

“Divert” Mode

• In the “divert” mode, the Gateway diverts the messages that would normally pass
 between the first application and the host, re-routing them to/from the second application
 instead.

• When the first application sends a message to the host, the Gateway re-routes the
 message to the second application. The host does not receive it.

• When the host sends a message to the first application, the Gateway re-routes the
 message to the second application. The first application does not receive it.

 121

The second application can also send messages to the first application or the host.
The Gateway delivers such messages as if they had passed between the first application and the
host. For details, see the Message Forwarding section below.

Usage

As explained above, the Shared TA mechanism involves two applications. The first application
has opened a TA object by the normal means. The second application accesses it through the
Shared TA mechanism, by using the following procedure:

1. The second application connects to the object using IateOpen with the

APIinterceptName option:

 refnum = IateOpen (StartCode, APIinterceptName, ObjectName);

2.2.2.2. The second application uses IateControl to select the “intercept” or “divert” mode, and

the direction of message traffic to intercept or divert:

 IateControl (StartCode, ShareCommand, ShareFlag);

 The ShareCommand and ShareFlag arguments take the following values:

 ShareCommand:
 This argument selects the direction of message traffic
 that the second application will intercept or divert.
 Use either one of the following values:
 APIintrRouteOutput - for application-to-host message traffic, or
 APIintrRouteInput - for host-to-application message traffic.

 ShareFlag:
 This selects the “intercept” or “divert” mode (discussed above).
 Use either one of the following values:
 INTRBOTH - to select the “intercept” mode, or
 INTRDIVERT - to select the “divert” mode.

 122

 Examples:

 To “intercept” messages that the first application sends to the host,
 use this IateControl call:

 IateControl (StartCode, APIintrRouteOutput, INTRBOTH);

 To “divert” messages that the first application attempts to
 send to the host, use this IateControl call:

 IateControl (StartCode, APIintrRouteOutput, INTRDIVERT);

 To “intercept” messages that the host sends to the first application,
 use this IateControl call:

 IateControl (StartCode, APIintrRouteInput, INTRBOTH);

 To “divert” messages that the host attempts to send to the first application,
 use this IateControl call:

 IateControl (StartCode, APIintrRouteInput, INTRDIVERT);

 3. The second application proceeds to receive and/or send messages
 on the intercepted channel, using IateRead and/or IateWrite.

 4. To terminate the Shared TA mode, the second application
 again uses IateControl, with the INTRNORMAL flag:

 IateControl (StartCode, APIintrRouteOutput, INTRNORMAL);

 or
 IateControl (StartCode, APIintrRouteInput, INTRNORMAL);

 123

Message Forwarding

In addition to intercepting or diverting host data traffic, the second application can also send messages to
the first application or the host. The Gateway delivers such messages as if they had passed between the
first application and the host.

Message Forwarding requires “intercept” mode (INTRBOTH), not “divert” mode (INTRDIVERT). If
the second application wishes to send a message to be forwarded on a connection that is currently in the
"divert" mode, the application should switch to “intercept” mode before sending the message.

Note for Macintosh Applications:
The IATE API for Macintosh automatically resets to the normal mode (INTRNORMAL)
after each message transaction. Macintosh API applications that use message forwarding must reset to
“intercept” mode (INTRBOTH) before sending each message to be forwarded.

Examples of Message Forwarding:

The second application sends a message which the gateway will
forward to the host (as if it came from the first application):

 char buff[] = "SOME DATA TO THE HOST";
 IateControl (refnum, APIintrWriteInput, buff);

The second application sends a message which the gateway will
forward to the first application (as if it came from the host):

 char buff[] = "SOME DATA TO THE SHARED TA";
 IateControl (refnum, APIintrWriteOutput, buff);

 124

Sample Program

The IATE software package includes an example of a sharing application, testincp.c.
This application should be used in tandem with the sample terminal test application,
testterm.c, as follows:

• Using testterm, open a connection to an available TA object.

• Run testincp using the same object name, selecting the the divert mode, as follows:

 testterm -oan_object_name
 testincp -oan_object_name -sINTRDIVERT

 The Gateway will divert messages that would normally pass between
 the testterm application and the host. The testincp program
 will receive the diverted messages.

• Enter a message into testterm, and watch testincp receive the message.
 Also have the host send a message, and watch testincp receive that
 message as well.

• Stop testincp, and then restart it in the “intercept” mode, as follows:

 testincp -oan_object_name -sINTRBOTH

• Messages can now be forwarded to the host by placing an “I” in front of
 testincp keyboard entries, or to the testterm application by placing
 an “O” in front of the keyboard entry.

Refer to the testincp.c source code file for further information about the sharing sample program.

To display a summary of usage information for either program, use the -h command-line option:

 testincp -h

 testterm -h

 125

Appendix E: The IATE API for Visual Basic

This appendix describes the IATE API for Microsoft® Visual Basic.

The IATE API DLLs for Visual Basic

The IATE API for Visual Basic is named “iate32b.dll”. This DLL is for use with Visual Basic
only. It is separate and independent from the C-language version of the DLL, “iate32.dll”.

Because the API for Visual Basic is provided through the traditional DLL mechanism
(not a COM or .NET object), its usage requires explicit declarations of the API functions and
their parameters. The Sample Programs discussed below include all of the required definitions.
InnoSys recommends using the Sample Programs as a starting point for developing applications
with the IATE API in Visual Basic.

Sample Programs for Visual Basic

The IATE Sample Programs for Visual Basic have been tested with Visual Basic version 6. At
this time (2001), the Sample Programs have not been tested with other versions of Visual Basic,
and are therefore not intended for use with any earlier version, or any later version such as Visual
Basic 7 or the .NET framework.

There are two different IATE Sample Programs for Visual Basic. The first is a simple ‘terminal’
application with which a user can connect to an airline host, enter commands, and view
responses.

The second sample program is similar to the first, with additional features to demonstrate the IATE
Intercept Mode. (Intercept Mode is discussed in Appendix D: Sharing a TA, on page 120).
Aside from this difference in communication modes, the two sample programs are similar in
purpose and structure.

Each sample program for Visual Basic uses a “Form” to present its user-interface.
(A Form is the standard Visual Basic object to create a user-interface.)
The sample programs’ Forms are illustrated below.

 126

The Sample Programs’ Forms

This is the Form (user interface) for the first sample program:

In the first three text fields on the form, the user enters the standard parameters required for an
IATE connection: (1) the name of the IATE Gateway host, (2) a TCP/IP network service-name
or port-number (such as “ialcserver” or 1413), and (3) a client/TA object name.

Next, the user presses the Connect button on the form, to connect to the gateway. When the user
presses the Connect button, the sample program calls the IateOpen function to open the
connection.

After connecting, the user can enter a command into the Text to Send field, and press the Send
button to send the command to the airline host. The program uses IateWrite to send messages
to the host through the Gateway, and IateRead to receive responses. Any responses received
from the host will appear in the large text box in the bottom left corner of the form.

Additional controls on the form include: a write-lock Reset button, a configuration information
retrieval button, and diagnostic logging control buttons. All of these controls perform their
operations through the appropriate IATE API functions and supplementary Visual Basic code in
the sample programs.

The form’s code module contains the subroutines which operate all of those interactive objects
(text fields and buttons) on the form. The form’s code file is “IATE_sample.frm”.

 127

The second sample program, which demonstrates the IATE Intercept Mode,
uses a slightly different Form:

This Form is nearly identical to the first sample’s Form, except that the Send button is replaced
with two separate buttons: Send to Host and Send to Client. The meaning of the Connect
button is also different from the first sample.

In the first three text fields on the form, the user enters the standard parameters required for an
IATE connection: (1) the name of the IATE Gateway host, (2) a TCP/IP network service-name
or port-number (such as “ialcserver” or 1413), and (3) a client/TA object name.

Next, the user presses the Connect button on the form. When the user presses the Connect
button, the sample program calls the IateOpen function to open the connection. To establish the
Intercept Mode, the program calls the IateControl function with the APIintrRouteOutput and
APIintrRouteInput commands, and specifies the INTRBOTH flag for Intercept Mode.

As in the first sample, the user can enter a command into the Text to Send field, and press the
Send button to send the command to the airline host. In the Intercept Mode, the program sends
the command “on behalf” of the intercepted client (as if that client had sent the command).

Any responses received from the host will appear in the large text box in the bottom left corner
of the form. Because this program uses Intercept Mode, the host’s responses will also reach the
intercepted client (i.e., the response was “intercepted”).

Intercept Mode is discussed further in Appendix D: Sharing a TA, on page 120.

 128

Structure of the Sample Applications

The following diagram illustrates the general structure of the sample code.
The functions listed in the diagram are described on the following pages.

Timer 1
(invokes
callIateRead
periodically)

Helper Functions
(see page 124):

• innoStartGWAPI
• innoStopGWAPI
• callIateRead
• callIateWrite
• setReadTimeout
• checkHostStatus
• resetLock
• sendPrinterStat
• getObjectConfiguration
• setLogging
... etc. ...

Connection

to
Gateway

IATE API
Functions
(see page 122):

• IateStart
• IateStop
• IateControl
• IateRead
• IateWrite

User-Interface Functions
(see page 129):

• Btn_ConnectToGateway_Click
• Btn_GetObjectConfiguration_Click
• Btn_ResetLock_Click
• Btn_SendToHost_Click
... etc. ...

 129

Using the IATE API in Visual Basic

The IATE API for Visual Basic supports the same functions as the IATE API for the C language:
IateStart, IateOpen, IateRead, IateWrite, and IateControl. The Sample Programs include the
required declarations of those functions, along with definitions of some of their possible
parameters (such as the various IateControl command codes). These declarations can be found
in the file “IATE_API_defs.bas”.

To simplify development, it is recommended that the application use an additional set of
“Helper Functions” in order to access the API functions mentioned above. The Helper Functions
can encapsulate the typical usage of the API functions in the Visual Basic environment. This can
be helpful during development and may also reduce code redundancy. The Sample Programs
provide suggested Helper Functions in the file “IATE_API_helper.bas”.

Data Types

The IATE API for Visual Basic uses the following data types for function call parameters.

The following data types apply in parameters to the fundamental API functions
(IateStart, IateOpen, IateRead, IateWrite, IateClose, and IateStop):

 As Long - IATE API numeric parameters are generally declared ByVal As Long,
 corresponding to the long parameters in the API for C language.

 As String - String parameters to several API functions are declared ByVal As String.

 For example, the IateOpen function declaration has
 two Long parameters and a String parameter:

 Declare Function IateOpen Lib "IATE32b.DLL" (_
 ByVal lStartCode As Long, _
 ByVal lCmd As Long, _
 ByVal sBuff As String _
) As Long

 As Any - The various IateControl commands use different data types in
 the third parameter to IateControl. These data types include:
 Long, String, or a data-structure type. Depending on the command-code,
 these may be either input to the function, or returned output.
 To accomodate all of these cases, the IateControl function’s
 third parameter is declared ByRef As Any.

Some additional data types (e.g., As Integer and As Byte) are used in parameters to the IATE
API Helper Functions for Visual Basic, as described later in this appendix.

 130

IATE API Functions in Visual Basic

The IATE API functions are declared in “IATE_API_defs.bas”. Also declared in the same file
are some common parameter values, including the various command codes for IateControl.

Each API function’s parameters correspond directly to those of the C-language version of the
function. For more information, please refer to the discussion of the C-language version of each
function, in the API Library Reference section of this manual.

It is recommended that the application use the Helper Functions provided with the
Sample Programs, instead of calling these API functions directly. Helper Functions
are described in the next section.

' Function: IateStart()
' Purpose: The first API call required to begin using the API.
'
Declare Function IateStart Lib "IATE32b.DLL" (_
 ByVal lInstallHandlers As Long, _
 ByVal lDummy As Long, _
 ByVal sBuff As String _
) As Long

' Function: IateOpen()
' Purpose: Open a connection to the IATE Gateway via the API.
'
Declare Function IateOpen Lib "IATE32b.DLL" (_
 ByVal lStartCode As Long, _
 ByVal lCmd As Long, _
 ByVal sBuff As String _
) As Long

' Function: IateRead()
' Purpose: Read data from the host through the IATE Gateway.
'
Declare Function IateRead Lib "IATE32b.DLL" (_
 ByVal lRefNum As Long, _
 ByVal MAX_BUFF_SIZE As Long, _
 ByVal sBuff As String, _
 ByVal innoCtrlBlock As String _
) As Long

 131

' Function: IateWrite()
' Purpose: Write data to the host through the IATE Gateway.
'
Declare Function IateWrite Lib "IATE32b.DLL" (_
 ByVal lRefNum As Long, _
 ByVal lCommandLength As Long, _
 ByVal sCommand As String _
) As Long

' Function: IateClose()
' Purpose: Close the connection with the IATE Gateway via the API.
'
Declare Function IateClose Lib "IATE32b.DLL" (_
 ByVal lRefNum As Long _
) As Long

' Function: IateStop()
' Purpose: Terminate this program's usage of the IATE API.
'
Declare Function IateStop Lib "IATE32b.DLL" (_
 ByVal sStartCode As Long _
) As Long

' Function: IateControl()
' Purpose: This function supports various API control commands.
'
Declare Function IateControl Lib "IATE32b.DLL" (_
 ByVal lRefNum As Long, _
 ByVal lCmd As Long, _
 ByRef sBuff As Any _
) As Long

 132

“Helper Functions” in the Sample Applications for Visual Basic

The IATE API Sample Programs for Visual Basic contain several Helper Functions.
The Helper Function module code is provided in the file “IATE_API_helper.bas”.

The Helper Functions module operates as a “layer” between the IATE API functions and the rest
of the application code. An application can use the Helper Functions to encapsulate typical
usage of IATE API functions in Visual Basic.

Note: There are two different Sample Programs. The Helper Functions differ slightly
 between the main Sample Program, and the alternative sample for Intercept Mode.
 The following listing refers to the main sample, not the Intercept Mode sample.

' Procedure: innoStartGWAPI
'
' Purpose: Open a connection to the IATE API, and then
' open a connection to a TA object through the API and Gateway.
'
' Arguments: GatewayName: Name of IATE Gateway host.
'
' ServiceName: Name of TCP/IP Service
' (such as "ialcserver"),
' or TCP/IP port number.
'
' ObjectName: Name of TA object.
'
' Returns: 'True' to indicate successful connection, or
' 'False' to indicate failure to connect.
'
Public Function innoStartGWAPI(_
 ByVal gatewayName As String, _
 ByVal serviceName As String, _
 ByVal objectName As String _
) As Boolean

 133

' Procedure: innoStopGWAPI
'
' Purpose: Close a connection with an IATE Gateway TA object,
' and then close our connection with the IATE API.
'
' Returns: 'True' if this function closed the connection, or
' 'False' if the connection was already closed.
'
Public Function innoStopGWAPI() As Boolean

' Function: callIateRead
'
' Purpose: Call the IateRead API function to retrieve
' any data that the API has received through the
' Gateway connection.
'
' Returns: The data received, as a string
' (or the empty string "" if no data
' has been received on this call).
'
' Usage: Call this frequently from a Timer event handler.
'
' Note: If IateRead were to sit and wait for data,
' the VB GUI would 'freeze' during the wait
' (in the current single-threaded implementation).
' To prevent IateRead from waiting, an earlier call
' to setReadTimeout has set the IATE read timeout
' to zero. IateRead will therefore return immediately
' (returning data, if any, that the IATE API has
' recently received from the Gateway).
'
' Since IateRead will return immediately, we'll have to
' call this function frequently to check for any
' additional data received. For that reason, a timer
' event handler will call this function periodically.
'
Public Function callIateRead() As String

' Function: callIateWrite
'
' Purpose: Call the IateWrite function to send a data message
' through the the IATE API and Gateway to the airline host.
'
' Argument: msg: The data message to send.
'
' Returns: The return code from the IateWrite API function.
' A value less than zero indicates an error.
'
Public Function callIateWrite(ByVal msg As String) As Integer

 134

' Procedure: setReadTimeout
'
' Purpose: Set a zero timeout for IateRead calls, so that
' IateRead will not block while waiting for data.
' To set that timeout, use the IateControl
' API function with command APISetTO.
'
' Usage: Call this once after opening a session.
'
' Note: This will set a zero timeout, so that IateRead
' will return immediately, not wait for data.
' This helps to keep the VB GUI running smoothly, but
' we shall have to call the callIateRead() procedure
' repeatedly and frequently to check and retrieve any
' data received. A Timer event should trigger those
' periodic calls to callIateRead().
'
' See also: Timer1_Timer
'
Public Sub setReadTimeout()

' Procedure: checkHostStatus
'
' Purpose: Check the status of the gateway/host connection,
' using the IateControl API function with the
' APIGetHostStat command.
'
' Returns: 'True' if the gateway/host connection
' appears to be up and operational; or
' 'False' if there seems to be a possible
' problem with that connection.
'
' Usage: Call this frequently from a Timer event handler.
'
Public Function checkHostStatus()

' Procedure: resetLock
'
' Purpose: Use the APIResetLocal command, asking the IATE API
' to reset the Keyboard-Locked status on the current session.
'
Public Sub resetLock()

 135

' Procedure: sendPrinterStat
'
' Purpose: Send a Printer-Stat message to the Gateway.
' This is a required formality, even though we have no
' printer attached to this program. Because there is no
' printer attached, this Printer-Stat message will
' indicate that the printer is 'unavailable'.
'
' Usage: Call this once after opening a session.
'
Public Sub sendPrinterStat()

' Procedure: getObjectConfiguration
'
' Purpose: Retrieve information about the configuration
' of the currently connected TA object.
' To get that information, use the IateControl
' API function with command APIGetObjectConfig.
'
' Returns: A string containing a humanly readable (we hope)
' representation of the object's configuration.
'
Public Function getObjectConfiguration()

' Procedure: setLogging
'
' Purpose: Send a Set-Logging message to the Gateway.
' This enables API debugging messages,
' logged in a file named "iatelog.log".
'
' Usage: Call this once after opening a session.
'
' Argument: level: 0 to turn off debugging, otherwise
' a level up to FFFF hexadecimal (65535 decimal)
'
' Note: IATE API debugging facilities are limited in VB.
' We can use APISetApiLogging (to log the debugging
' messages in a file), but we cannot use APISetApiDebugging
' (e.g. to output the messages to the screen).
'
Public Sub setLogging(level As Long)

 136

' Procedure: protocolName
'
' Purpose: Given an IATE host protocol type number,
' return the name of the indicated host protocol.
'
' Called by: getObjectConfiguration()
'
Public Function protocolName(protocolNumber As Integer)

' Procedure: objectTypeName
'
' Purpose: Given an IATE object type number,
' return the name of the indicated object type.
'
' Called by: getObjectConfiguration()
'
Public Function objectTypeName(objectTypeNumber As Integer)

' Procedure: gatewayTypeName
'
' Purpose: Given an IATE gateway type number,
' return the name of the indicated gateway type.
'
' Called by: getObjectConfiguration()
'
Public Function gatewayTypeName(gatewayTypeNumber As Integer)

' Procedure: lineTypeName
'
' Purpose: Given an IATE host line type number,
' return the name of the indicated host line connection protocol.
'
' Called by: getObjectConfiguration()
'
Public Function lineTypeName(lineTypeNumber As Byte)

' Procedure: innoShowError
'
' Purpose: Set up an error message to report an IATE API error,
' specified by an error code returned from an IATE API function.
'
' Argument: innoErrNum: The error code returned from an IATE API function.
'
' Note: The error code numbers used here are defined in the
' IATE API C-language header file "u_apierr.h".
'
Public Function innoShowError(ByVal innoErrNum As Long) As String

 137

User-Interface Functions in the Sample Applications for Visual Basic

Each sample program for Visual Basic uses a “Form” to present its user-interface,
as discussed earlier (see “The Sample Programs’ Forms”, on page 126).

Following is an overview of the Visual Basic code attached to the form. This code performs the
functions assigned to each text field and button object on the form, and also uses the Helper
functions to communicate with the Gateway and host.

Note: There are two different Sample Programs. The Helper Functions differ slightly
 between the main Sample Program, and the alternative sample for Intercept Mode.
 The following listing refers to the main sample, not the Intercept Mode sample.

' Name: Btn_ConnectToGateway_Click
'
' Purpose: Mouse-click handler for the Connect/Disconnect button.
' This subroutine calls other subroutines to Connect or Disconnect
' from the airline host. This subroutine also updates the display
' on the main form, to show the Connected or Disconnected status.
'
Public Sub Btn_ConnectToGateway_Click()

' Procedure: Btn_GetObjectConfiguration_Click()
'
' Purpose: Mouse-click handler for the Get-Configuration button.
' This subroutine calls getObjectConfiguration to obtain
' information about the connected TA object's configuration,
'
Private Sub Btn_GetObjectConfiguration_Click()

' Procedure: Btn_ResetLock_Click()
'
' Purpose: Mouse-click handler for the Reset-Lock button.
' This subroutine calls resetLock to reset the
' IATE API write-lock; and then turns off the
' Keyboard-Locked indicator, and disables the
' Reset-Lock button.
'
Private Sub Btn_ResetLock_Click()

 138

' Name: Btn_SendToHost_Click
'
' Purpose: Mouse-click handler for the Send-Message button.
'
' This subroutine uses callIateWrite to send a
' message through the Gateway to the host.
' The text of the message comes from the
' "Text to Send" input text box.
'
' This function also turns off the
' Keyboard-Locked indicator, and
' enables the Reset-Lock button.
'
Private Sub Btn_SendToHost_Click()

' Name: Radio_Debugging0_Click
'
' Purpose: Mouse-click handlers for the first of the
' three API Debugging mode buttons:
' This is the "Don't log debugging messages" button.
'
Private Sub Radio_Debugging0_Click()

' Name: Radio_Debugging1_Click
'
' Purpose: Mouse-click handler for the 2nd of the three
' API Debugging mode buttons. This button, labelled
' "Log debugging messages", enables a commonly used set of
' API diagnostic messages for troubleshooting purposes.
'
Private Sub Radio_Debugging1_Click()

' Name: Radio_Debugging2_Click
'
' Purpose: Mouse-click handler for the third of the
' API Debugging mode buttons. This button, labelled
' "Log detailed debugging messages", enables all possible
' API diagnostic messages for troubleshooting purposes.
'
Private Sub Radio_Debugging2_Click()

 139

The “Timer Object” in the Sample Applications for Visual Basic

The sample code for Visual Basic uses a “Timer” object to check for messages from the host.
The timer object periodically invokes its event handler subroutine, which uses callIateRead
to retrieve any messages that the API has received from the Gateway and the airline host.

The reason for using a timer in this way is that the sample programs are single-threaded.
When callIateRead calls IateRead, the rest of the sample program and the VB user interface are
suspended, until after IateRead returns. If the IateRead call were to wait for data before
returning, the entire program would appear to ‘freeze’.

To prevent IateRead from waiting, the sample code calls the setReadTimeout helper function
during program startup. After setReadTimeout has set the read timeout to zero, the timer
function can use callIateRead with minimal delay, so that the program will not ‘freeze’.
I

' Procedure: Timer1_Timer
'
' Purpose: Perform frequent periodic tasks:
' - Retrieve any new data received
' from the Host through the Gateway, and
' - Check the status of the Gateway/Host connection.
'
' Usage: A timer should trigger this procedure periodically,
' on an interval of one second or less.
' This allows us to call IateRead to check for data
' almost continuously, without incurring any substantial
' delay during the IateRead call. This rapid 'polling'
' technique is necessary in our current single-threaded
' implementation. We must avoid delays in IateRead,
' to keep the VB GUI running smoothly.
'
' A multi-threaded implementation could be more efficiently
' driven by other "events" rather than a continuously polling
' timer routine. But multi-threading would be more complex.
' One way to do that would involve COM/ActiveX facilities
' to achieve multi-threading. Or perhaps new threading features
' in future versions of VB could be used. For basic IATE
' communication purposes, it's adequate (and far simpler)
' to use timer-driven polling in a single thread.
'
' See also: setReadTimeout
'
Private Sub Timer1_Timer()

	Contents
	OVERVIEW OF THE API	1
	Overview of the API
	Supported Platforms
	IATE Installation Requirements
	Application Requirements
	Summary of IATE API Functions

	API Library Reference
	IateStart
	Summary:
	Purpose:
	Usage:
	Arguments:
	Returns:
	Example:

	IateOpen
	Summary:
	Purpose:
	Usage:
	Arguments:
	Returns:
	Note:
	See also:
	Example:

	IateClose
	Summary:
	Purpose:
	Usage:
	Arguments:
	Returns:
	Example:

	IateStop
	Summary:
	Purpose:
	Usage:
	Argument:
	Returns:

	IateRead
	Summary:
	Purpose:
	Usage:
	Arguments:
	Returns:
	Examples:

	IateWrite
	Purpose:
	Syntax:
	Description:
	Returns:
	Example:
	Summary:
	Purpose:
	Arguments:
	Returns:

	IateControl Commands
	APISetApiDebug
	Purpose:
	Arguments:
	See also:
	Example:

	APISetApiLogging
	Purpose:
	Arguments:
	See also:
	Example:

	APISetDebugOut
	Purpose:
	Arguments:
	Example:

	APISetOpenDelay
	Purpose:
	Arguments:
	Example:

	APISetTO
	Purpose:
	Arguments:
	Example:

	APISetMsg
	Purpose:
	Arguments:
	See Also:
	Example:

	APISetSegment
	Purpose:
	Arguments:
	See Also:
	Example:

	APISetAutoAns
	Purpose:
	Arguments:
	See Also:
	Example:

	APISetNoAns
	Purpose:
	Arguments:
	Example:

	APIGetTaProt
	Purpose:
	Arguments:
	Example:

	APIGetTaCCC
	Purpose:
	Arguments:
	Returns:
	Example:

	APIGetHostStat
	Purpose:
	Arguments:
	Returns:
	Example:

	APIGetTaStat
	Purpose:
	Arguments:
	Returns:
	See Also:
	Example:

	APIGetTaThrottle
	Purpose:
	Arguments:
	Returns:
	Example:

	APIGetObjectConfig
	Purpose:
	Arguments:
	Example:

	APISendAck
	Purpose:
	Arguments:
	Example:

	APIPrinterStat
	Purpose:
	Arguments:
	Example:

	APInoTaTimeout
	Purpose:
	Arguments:
	Example:
	See Also:

	APIGetVersion
	Purpose:
	Arguments:
	Returns:
	Example:

	APISetHeartbeat
	Purpose:
	Arguments:
	See Also:
	Examples:

	APIStart1min
	Purpose:
	See also:

	APIResetLock
	Purpose:
	Arguments:
	See also:
	Examples:

	APIResetLocal
	Purpose:
	Arguments:
	Example:

	APIForwardReset
	Purpose:
	Arguments:
	Example:

	APIWhoAmI
	Purpose:
	Arguments:
	Returns:
	Example:

	Peer-to-Peer Messages
	APIQueryApplMsg
	Purpose:
	Arguments:
	Returns:
	Example:

	APIGetApplMsg
	Purpose:
	Arguments:
	Returns:
	Example:

	APISendApplMsg
	Purpose:
	Arguments:
	Examples:

	APIForceSeperateSockets
	Purpose:
	Arguments:
	Example:

	Appendix A: Error Codes
	Error -2002: ServerUnreachable / NoServerError
	Explanation:

	Error -2003: OutOfBufferError
	Explanation:

	Error -2004: ObjectUndefined / NameIsBad
	Explanation:

	Error -2005: NameInUse
	Explanation:

	Error -2007: DataError
	Explanation:

	Error -2008: NotStartedError
	Explanation:

	Error -2009: BadVersionError
	Explanation:

	Error -2010: DirectionViolation
	Explanation:

	Error -2011: InterceptError
	Explanation:

	Error -2101: APINoFreeChannel / TooManySessions
	Explanation:

	Error -2102: APIBadChannel / InvalidRefnum
	Explanation:

	Error -2103: APIOverrunErr
	Explanation:

	Error -2201: InternalLogicError
	Explanation:

	Error -2205: HostUnreachable
	Explanation:

	Error -2207: SessionNotConfigured
	Explanation:

	Error -2208: NoSocket
	Explanation:

	Error -2209: CantConnectToServer
	Explanation:

	Error -2210: UnexpectedMsgType
	Explanation:

	Error -2211: WriteFailed
	Explanation:

	Error -2212: ReadFailed
	Explanation:

	Error -2214: OpenBlocked
	Explanation:

	Error -2215: SessionDisconnected
	Explanation:

	Error -2216: NotImplemented
	Explanation:

	Error -2217: TooMuchDataQueued
	Error -2218: TooManyConnections
	Explanation:

	Error -2404: InvalidTask
	Explanation:

	Appendix B: Background Information on the Gateway
	Terminal and Printer Device Objects
	Dynamic Objects

	Appendix C: Description of Host Traffic
	Appendix D: Sharing a TA
	“Intercept” Mode
	“Divert” Mode
	Usage
	Message Forwarding
	Sample Program

	Appendix E: The IATE API for Visual Basic
	The IATE API DLLs for Visual Basic
	Sample Programs for Visual Basic
	The Sample Programs’ Forms
	Structure of the Sample Applications

	Using the IATE API in Visual Basic
	Data Types

	IATE API Functions in Visual Basic
	“Helper Functions” in the Sample Applications for Visual Basic
	User-Interface Functions in the Sample Applications for Visual Basic
	The “Timer Object” in the Sample Applications for Visual Basic

